共检索到 3

This study investigates the microhardness and geometric degradation mechanisms of interfacial transition zones (ITZs) in recycled aggregate concrete (RAC) exposed to saline soil attack, focusing on the influence of supplementary cementitious materials (SCMs). Ten RAC mixtures incorporating fly ash (FA), granulated blast furnace slag (GBFS), silica fume (SF), and metakaolin (MK) at 10 %, 15 %, and 20 % replacement ratios were subjected to 180 dry-wet cycles in a 7.5 %MgSO4-7.5 %Na2SO4-5 %NaCl solution. Key results reveal that ITZ's microhardness and geometric degradation decreases with exposure depth but intensifies with prolonged dry-wet cycles. The FAGBFS synergistically enhances ITZ microhardness while minimizing geometric deterioration, with ITZ's width and porosity reduced to 67.6-69.0 mu m and 25.83 %, respectively. In contrast, FA-SF and FA-MK exacerbate microhardness degradation, increasing porosity and amplifying microcrack coalescence. FA-GBFS mitigates the diffusion-leaching of aggressive/original ions and suppresses the formation of corrosion products, thereby inhibiting the initiation and propagation of microcracks. In contrast, FA-SF and FA-MK promote the formation of ettringite/gypsum and crystallization bloedite/glauberite, which facilitates the formation of trunk-limb-twig cracks.

期刊论文 2025-10-01 DOI: 10.1016/j.cemconcomp.2025.106176 ISSN: 0958-9465

The production of ferrous as well as non-ferrous metals generates slag as a byproduct material. Ferrous slags are extensively used in the construction sector as supplementary cementitious material (SCM) and aggregates. In this regard, the investigation of potential applications in similar areas for slags derived from the production of non-ferrous metals can help to address issues associated with their disposal, dumping, environmental concerns, etc. The primary aim of this research is to assess the pozzolanic activity of copper slag (CS), a type of non-ferrous slag. This investigation is conducted to replace a portion of ordinary Portland cement (OPC) incorporating CS as an SCM for sustainable construction. To assess the reactivity of the CS, comparisons were drawn with a known pozzolanic material fly ash (FA), and an inert material quartz powder (QP). The processing of raw CS (granular material) was carried out using a laboratory scale ball mill to achieve varying fineness to evaluate the effect of specific surface area (SSA) on reactivity. Initially, the investigations were conducted on paste samples of OPC-CS and suspensions of CScalcium hydroxide (CH) and were later extended to mortar studies. Mechanical characteristics such as compressive strength and open porosity of mortar specimens were determined to correlate with the paste studies results. The findings suggest that CS does exhibit pozzolanic characteristics although its reactivity is comparatively lower than that of FA. An increase in the fineness of the CS resulted in enhanced pozzolanic activity. Analysis of the hydrated suspension samples showed the formation of Fe-siliceous hydrogarnet phase indicating Fe from CS was involved in the reaction with CH. Although OPC-CS mortar samples exhibited similar open porosity compared to OPC-QP mortar samples, the interfacial transition zone (ITZ) porosity in mortar samples of OPC-CS was observed to be reduced indicating the densification of the region due to the pozzolanic reaction of CS. The permissible replacement of OPC with CS as a substitute for FA can be adjusted according to the material's fineness and the desired compressive strength.

期刊论文 2024-04-15 DOI: 10.1016/j.jobe.2023.108375

Concrete is subject to the combined erosive effects of physical and chemical activities in cold, salty soil regions. In this work, durability tests of recycled concrete (RC) subjected to sulfate freeze-thaw cycles were conducted. The macroscopic performance deterioration law of RC under the influence of the replacement rate (0%, 50%, 100%) and the moisture content of coarse recycled concrete aggregate (CRCA) (0%, 50%, 100%) was investigated by analyzing the change characteristics of apparent damage, mass loss rate, and Relative dynamic modulus of elasticity (RDME) of RC during the erosion process. At the same time, nuclear magnetic resonance (NMR) and microhardness testing equipment were used to examine the multi-parameter evolution features such as porosity, pore distribution, interfacial transition zone (ITZ) width, and strength. The findings indicate that the main cause of the variation in the degree of damage to the RC surface layer is the variance in the effective water-cement (w/ c) ratio of the mortar due to replacement rate and moisture content. The strength and area of erosion damage increase when the CRCA replacement rate rises due to the easier inward penetration of the sulfate solution. CRCA with a 50% moisture content could increase the strength of the mortar by decreasing the mortar's effective w/c ratio. The rate and effectiveness of salt solution replenishment inward were simultaneously slowed down by the improved ITZ performance. In erosive situations, the fractal dimension of RC reduces to varying degrees. This is due to the expansion of the pore structure. The porosity/fractal dimension is employed as the comprehensive pore parameter eta in this research so as to take into account the integrity of the pore structure and the specificity of the pore distribution. The improved microstructure damage variables can reflect the erosive microstructure deterioration process of RC.

期刊论文 2024-01-19 DOI: 10.1016/j.conbuildmat.2023.134794 ISSN: 0950-0618
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页