Integral bridges with longer spans experience an increased cyclic interaction with their granular backfills, particularly due to seasonal thermal fluctuations. To accurately model this interaction behaviour under cyclic loading, it is crucial to employ appropriate constitutive models and meticulously calibrate and test them. For this purpose, in this paper two advanced elastoplastic (DeltaSand, Sanisand-MS) and two hypoplastic (Hypo+IGS, Hypo+ISA) constitutive models with focus on small strain and cyclic behaviour are investigated. The soil models are calibrated based on a comprehensive laboratory programme of a representative highly compacted gravel backfill material for bridges. The calibration procedure is shown in detail and the model capabilities and limitations are discussed on the element test level. Additional triaxial tests with repeated un- and reloading reveal significant over- and undershooting effects for the majority of the investigated material models. Finally, cyclic finite element analyses on the soil-structure interaction of an integral bridge are conducted to compare the performance of the soil models. Qualitatively similar cyclic evolution of earth pressures are detected for the soil models at various bridge lengths and test settings. However, a substantially different cyclic settlement behaviour is observed. Additionally, the investigation highlights severe overshooting effects associated with the tested hypoplastic soil models. This phenomenon is studied in detail using a single integration point analysis. Supplementary studies reveal that the foot point deformation of the abutment significantly influences the lateral passive stress mobilisation and the amount of its increase with growing seasonal cycles.
Integral bridges have been proposed as a jointless design alternative to the traditional counterparts, possessing copious potential economic and structural advantages. However, due to the monolithic connection at the girder- abutment interface, longitudinal deformations from the superstructure must now be accommodated by the stiffness of the approach backfill and soil surrounding the foundation. Consequently, in addition to traffic loads, integral bridge approaches are subjected to long-term, cyclic loading due to diurnal and seasonal thermal variations. This has resulted in two progressive geotechnical phenomena: an escalation of lateral passive pressures at the abutment-soil interface and accumulated deformations near the bridge approach. Over the last two decades, several investigations on the approach backfill-abutment interaction have been carried out. However, previous reviews on integral bridges have not comprehensively discussed the theoretical aspects of these two complex geotechnical issues. Hence, this paper presents a discussion on the long-term response of stress ratcheting observed from controlled analyses, along with a comparison to that from field monitoring data. Subsequently, the occurrence of accumulated deformations, along with a correlation to the mechanism of the cyclic interaction is explored. The effects of foundation design choice and skew angle on the passive pressure accumulation and soil deformation behavior are then presented. Subsequently, approaches used to mitigate the effects of the backfillabutment interaction are compared. From this review, it is apparent that outcomes based on available experimental and field investigations are yet inadequate to develop analytical models required to predict the long-term response of integral bridge approach backfills under various loading conditions.
Long integral bridges experience an enhanced cyclic soil structure interaction with their granular backfills, especially due to seasonal thermal loading. For numerical modelling of this interaction behaviour under cyclic loading, it is important to employ a suitable constitutive model and calibrate it thoroughly. However, up to the present, experimental data and calibrated soil models for this purpose with focus on typical well-graded coarse-grained bridge backfill materials are rarely available in the literature. Therefore, one aim of this paper is to present results of a comprehensive cyclic laboratory testing programme on highly compacted gravel backfill material. Based on this, a hypoplastic constitutive model with intergranular strain extension for small strain and cyclic behaviour is calibrated and evaluated against the experimental test data. The soil model's abilities and limitations are discussed at element test level. In addition, cyclic FE analyses of an integral bridge are conducted with several hypoplastic parameter sets from the literature and compared to the calibrated gravel backfill material. The investigation highlights that poorly-graded sands show significantly smaller cyclic earth pressures compared to well-graded gravels intended for the backfilling of a bridge. The soil structure interaction behaviour is clearly governed by the general soil model stiffness, including the small strain stiffness.
Integral bridges are a low-maintenance form of bridge construction used worldwide. Their jointless structure eliminates bearing and expansion joint replacement bringing a reduction in lifecycle cost, carbon emissions, and socio-economic impact from road and rail disruption, therefore offering a resilient infrastructure solution in the face of a changing climate. By better understanding earth pressure ratcheting in the backfill due to repeated thermal movements of the deck, integral bridge use can increase to greater spans and skews while excessive design conservatism can be reduced. This paper explores the integral bridge problem and design code prescriptions before using analytical, numerical, and centrifuge modeling to show that soil-structure interaction, especially the relative stiffness of soil and structure, can reduce abutment bending moments by 30% and that this is largely unaccounted for in the current U.K. design code PD 6694-1. Preliminary results showed a similar influence of stiffness on seismic response.