Many geotechnical failures are associated with degradation of the soil strength over time. The time-dependency behavior of unsaturated loess is often required to evaluate the long-time behavior of geotechnical engineering in loess areas. To investigate such strain rate response and stress relaxation behavior of intact loess, a series of oedometric compression and relaxation tests were conducted under different suctions and strain rates. Water retention behaviors and microstructures were also measured to characterize the tested loess. The more rapid strain rate, leading to larger yield stress at relatively low suctions (0 and 50 kPa) and roughly paralleled onedimensional normal compression lines (1D-NCL) conformed to the isotache approach. In contrast, the weakening effect of a more rapid strain rate on the clay cementation, resulted in smaller yield stress when the suction was larger than 100 kPa, which was an apparent deviation from the conception of the isotache. The reason might be that the microstructure developed during the long term (slow strain rate) under the relatively larger suction, which may increase the inter-particle bonding and structural strength. The relaxation behavior of unsaturated loess depended on suction and prerelaxation stress, which cannot be well described by the model with a soil constant viscosity I v . The results of two viscous effects (rate-dependency and relaxation) in loess demonstrated that they could not altogether be explained within the isotache concept. (c) 2024 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society. This is an open access article under the CC BY- NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The water sensitivity and structural characteristics of collapsible loess are two typical factors that significantly influence its mechanical behaviors. This paper presents a simple and practical elastic-plastic model based on the modified Cam-Clay model to well capture the essential behavior of unsaturated intact loess. The model employs deviator stress and spheric stress as the stress variables, with the water content serving as the moisture variable. The critical state surface of the model can be determined by utilizing the shear strength parameters of unsaturated soil under axisymmetric stress conditions. An initial yield surface equation is established by incorporating structural strength into the elliptical yield surface equation, which is used to determine the starting point for elastic-plastic deformation calculations under different humidity and stress combinations. The model comprises several parameters, each of which has a clear physical interpretation and can be conveniently obtained through conventional triaxial tests. The validity of the model for unsaturated intact loess is confirmed through a comparison with the stress-strain relationship of unsaturated intact loess in the axisymmetric stress state. This work has the potential to significantly enhance our ability to predict and mitigate potential geotechnical disasters, such as foundation deformation under axisymmetric conditions and slope stability problems under non-axisymmetric conditions. Ultimately, the application of this model could contribute to the safety and stability of infrastructure and construction projects in loess regions.