Lunar exploration has attracted considerable attention, with the lunar poles emerging as the next exploration hot spot for the cold trapping of volatiles in the permanently shadowed regions (PSRs) at these poles. Remote sensing via the satellite's optical load is one of the most important ways to get the scientific data of PSRs. However, the illumination conditions at the lunar poles are quite different from the low latitude areas and how to get appropriate optical signal remains challenging. Thus, simulation of the optical remote sensing process, which provides reference for the choice of satellites' imaging parameters to ensure the implementation of lunar exploration project, is of great value. In this article, an optical imaging chain modeling for the PSRs at the lunar south pole, which includes lunar 3-D topography, observing satellite's orbit, instrument's parameters, and other environmental parameters, has been built. To demonstrate the physical accuracy, some PSRs' observations acquired by narrow angle cameras (NACs) equipped on the lunar reconnaissance orbiter (LRO) are compared with the corresponding images simulated by the proposed imaging chain model. The digital value's difference between the simulated images and real captured images is generally less than 50 for 12-bit images ranging from 0 to 4095, indicating a good fit considering the uncertainty of soil's absolute reflectance and the noise in the real captured images. In addition, the impact of the imaging chain's parameters is revealed with the proposed algorithm. The simulation method will provide reference and assist future optical imaging of PSRs.
Among the essential tools to address global environmental information requirements are the Earth-Observing (EO) satellites with free and open data access. This paper reviews those EO satellites from international space programs that already, or will in the next decade or so, provide essential data of importance to the environmental sciences that describe Earth's status. We summarize factors distinguishing those pioneering satellites placed in space over the past half century, and their links to modern ones, and the changing priorities for spaceborne instruments and platforms. We illustrate the broad sweep of instrument technologies useful for observing different aspects of the physio-biological aspects of the Earth's surface, spanning wavelengths from the UV-A at 380 nanometers to microwave and radar out to 1 m. We provide a background on the technical specifications of each mission and its primary instrument(s), the types of data collected, and examples of applications that illustrate these observations. We provide websites for additional mission details of each instrument, the history or context behind their measurements, and additional details about their instrument design, specifications, and measurements.
In-situ snow measurements conducted by European institutions for operational, research, and energy business applications were surveyed in the framework of the European Cooperation in Science and Technology (COST) Action ES1404, called A European network for a harmonised monitoring of snow for the benefit of climate change scenarios, hydrology, and numerical weather prediction. Here we present the results of this survey, which was answered by 125 participants from 99 operational and research institutions, belonging to 38 European countries. The typologies of environments where the snow measurements are performed range from mountain to low elevated plains, including forests, bogs, tundra, urban areas, glaciers, lake ice, and sea ice. Of the respondents, 93% measure snow macrophysical parameters, such as snow presence, snow depth (HS), snow water equivalent (SWE), and snow density. These describe the bulk characteristics of the whole snowpack or of a snow layer, and they are the primary snow properties that are needed for most operational applications (such as hydrological monitoring, avalanche forecast, and weather forecast). In most cases, these measurements are done with manual methods, although for snow presence, HS, and SWE, automatized methods are also applied by some respondents. Parameters characterizing precipitating and suspended snow (such as the height of new snow, precipitation intensity, flux of drifting/blowing snow, and particle size distribution), some of which are crucial for the operational services, are measured by 74% of the respondents. Parameters characterizing the snow microstructural properties (such as the snow grain size and shape, and specific surface area), the snow electromagnetic properties (such as albedo, brightness temperature, and backscatter), and the snow composition (such as impurities and isotopes) are measured by 41%, 26%, and 13% of the respondents, respectively, mostly for research applications. The results of this survey are discussed from the perspective of the need of enhancing the efficiency and coverage of the in-situ observational network applying automatic and cheap measurement methods. Moreover, recommendations for the enhancement and harmonization of the observational network and measurement practices are provided.
We follow Paper I with predictions of how gas leaking through the lunar surface could influence the regolith, as might be observed via optical transient lunar phenomena (TLPs) and related effects. We touch on several processes, but concentrate on low and high flow rate extremes, which are perhaps the most likely. We model explosive outgassing for the smallest gas overpressure at the regolith base that releases the regolith plug above it. This disturbance's timescale and affected area are consistent with observed TLPs; we also discuss other effects. For slow flow, escape through the regolith is prolonged by low diffusivity. Water, found recently in deep magma samples, is unique among candidate volatiles, capable of freezing between the regolith base and surface, especially near the lunar poles. For major outgassing sites, we consider the possible accumulation of water ice. Over geological time, ice accumulation can evolve downward through the regolith. Depending on gases additional to water, regolith diffusivity might be suppressed chemically, blocking seepage and forcing the ice zone to expand to larger areas, up to km(2) scales, again, particularly at high latitudes. We propose an empirical path forward, wherein current and forthcoming technologies provide controlled, sensitive probes of outgassing. The optical transient/outgassing connection, addressed via Earth-based remote sensing, suggests imaging and/or spectroscopy, but aspects of lunar outgassing might be more covert, as indicated above. TLPs betray some outgassing, but does outgassing necessarily produce TLPs? We also suggest more intrusive techniques from radar to in situ probes. Understanding lunar volatiles seems promising in terms of resource exploitation for human exploration of the Moon and beyond, and offers interesting scientific goals in its own right. Many of these approaches should be practiced in a pristine lunar atmosphere, before significant confusing signals likely to be produced upon humans returning to the Moon.
Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled and remains controversial. In this Paper I the database of TLP reports is subjected to a discriminating statistical filter robust against sites of spurious reports, and produces a restricted sample that may be largely reliable, and is highly correlated geographically with event catalogs from Apollo and Lunar Prospector alpha-particle spectrometers for episodic Rn-222 gas releases. Both this robust TLP sample and even the larger, unfiltered sample are highly correlated with the boundary between mare and highlands, as are both deep and shallow moonquakes, as well as Po-210, a long-lived product of Rn-222 decay and another tracer of outgassing. This offers another significant correlation relating TLPs and outgassing, and may tie some of this activity to sagging mare basalt plains (perhaps mascons). Additionally, low-level but likely significant TLP activity is connected to recent, major impact craters (hile moonquakes are not), which may indicate the effects of impact fracturing, or perhaps avalanches, allowing release of gas. Most TLP (and Rn-222) activity, however, is confined to one area likely causing major, recent volcanic effusion, and plausibly connected to the deep lunar interior. Our accompanying paper (rotts & Hummels) treats likely theoretical implications, plus practical methodologies for remote and in situ TLP and lunar outgassing observations. With the coming fleet of robotic lunar spacecraft, followed by human exploration, the study of TLPs and outgassing is both promising and imperiled. We anticipate a greater burden of anthropogenic lunar gas than ever produced, perhaps outstripping the natural atmosphere itself, but also unprecedented opportunities to study lunar outgassing and its sources if these can be examined promptly, in their pristine state.