共检索到 3

The study of multiscale pickup ion phase-mixing in the lunar plasma wake with a hybrid model is the main subject of our investigation in this paper. Photoionization and charge exchange of protons with the lunar exosphere are the ionization processes included in our model. The computational model includes the self-consistent dynamics of the light (H+ or H-2(+) and He+), and heavy (Na+) pickup ions. The electrons are considered as a fluid. The lunar interior is considered as a weakly conducting body. In this paper we considered for the first time the cumulative effect of heavy neutrals in the lunar exosphere (e.g., Al, Ar), an effect which was simulated with one species of Na+ but with a tenfold increase in total production rates. We find that various species produce various types of plasma tail in the lunar plasma wake. Specifically, Na+ and He pickup ions form a cycloid-like tail, whereas the H+ or H-2(+) pickup ions form a tail with a high density core and saw-like periodic structures in the flank region. The length of these structures varies from 1.5 R-M to 3.3 R-M depending on the value of gyroradius for H+ or H-2(+) pickup ions. The light pickup ions produce more symmetrical jump in the density and magnetic field at the Mach cone which is mainly controlled by the conductivity of the interior, an effect previously unappreciated. Although other pickup ion species had little effect on the nature of the interaction of the Moon with the solar wind, the global structure of the lunar tail in these simulations appeared quite different when the H-2(+) production rate was high.

期刊论文 2018-07-01 DOI: 10.1016/j.pss.2018.02.017 ISSN: 0032-0633

In this report we discuss the self-consistent dynamics of pickup ions in the solar wind flow around the lunar-like object. In our model the solar wind and pickup ions are considered as a particles, whereas the electrons, are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. The Moon will be chosen as a basic object for our modeling. The current modeling shows that mass loading by pickup ions H+, H-2(+), He+, and Na+ may be very important in the global dynamics of the solar wind around the Moon. In our hybrid modeling we use exponential profiles for the exospheric components. The Moon is considered as a weakly conducting body. Special attention will be paid to comparing the modeling pickup ion velocity distribution with ARTEMIS observations. Our modeling shows an asymmetry of the Mach cone due to mass loading, the upstream flow density distribution and the magnetic field. The pickup ions form an asymmetrical plasma tails that may disturb the lunar plasma wake. (C) 2013 COSPAR. Published by Elsevier Ltd. All rights reserved.

期刊论文 2013-12-01 DOI: 10.1016/j.asr.2013.08.023 ISSN: 0273-1177

In this report we discuss the self-consistent dynamics of pickup ions in the solar wind flow around the lunar-like object. In our model the solar wind and pickup ions are considered as a particles, whereas the electrons are described as a fluid. inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. The Moon will be chosen as a basic object for our modeling. The current modeling shows that mass loading by pickup ions Na+ and He+ may be very important in the global dynamics of the solar wind around the Moon. In our hybrid modeling we use exponential profiles for the exospheric components. The Moon is considered as a weakly conducting body. Special attention will be paid to comparing the modeling pickup ion velocity distribution with ARTEMIS observations. Our modeling shows an asymmetry of the Mach cone due to mass loading, the upstream flow density distribution and the magnetic field. The pickup ions form an asymmetrical plasma tails that may disturb the lunar plasma wake. (C) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.

期刊论文 2012-12-15 DOI: 10.1016/j.asr.2012.07.009 ISSN: 0273-1177
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页