This study investigates aerosol characteristics using ground-based measurements at two distinct regions, MohalKullu (31.9 degrees N, 77.12 degrees E; 1154 m amsl) and Kosi-Katarmal (29.64 degrees N, 79.62 degrees E; 1225 m amsl), from July 2019 to June 2022. The average Black Carbon (BC) concentrations were 1.5 f 1.0 mu g m- 3 at Mohal and 1.1 f 1.4 mu g m-3 at Katarmal. BC showed strong seasonal variability, with maxima during post-monsoon (2.6 f 1.0 mu g m- 3) and pre-monsoon (1.8 f 0.5 mu g m-3) seasons. The diurnal variation displayed distinct morning and evening peaks in all the seasons. High pre-monsoon AOD500 (0.30 f 0.06 to 0.54 f 0.08) and low values of & Aring;ngstrom exponent (0.67 f 0.10 to 0.95 f 0.30) indicated dominance of large particles, whereas lower AOD500 (0.21 f 0.07 to 0.25 f 0.03) in post-monsoon and winter, along with larger & Aring;ngstrom exponent (1.05 f 0.74 to 1.13 f 0.11), indicated smaller particles. Satellite-derived (OMI and MAIAC) AOD500 showed weak to moderate correlation with ground-based measurements at Mohal (R = 0.4639 for MAIAC, R = 0.1402 for OMI) and Katarmal (R = 0.3976 for MAIAC, R = 0.2980 for OMI). Using optical properties of aerosols and clouds (OPAC) and Santa Barbara discrete ordinate radiative transfer (SBDART) models, the short-wave aerosol radiative forcing (SWARF) was found negative at the surface and top of the atmosphere but positive in the atmosphere, suggesting significant surface cooling and atmospheric warming leading to high heating rates, respectively. Annual mean atmospheric radiative forcing was 27.36 f 6.00 Wm- 2 at Mohal and 21.87 f 7.26 Wm- 2 at Katarmal. These findings may have consequences for planning air pollution strategies and understanding the effects of regional climate change.
The Black carbon (BC) and Brown carbon (BrC) concentration has been measured over Srinagar (Garhwal) in central Himalayas during October 2020 to September 2021 periods. The average BC mass was 2.59 +/- 1.96 mu g m- 3 and its absorption coefficients were abundant at shorter wavelength. BC seasonal variation exhibited a significant variability, with highest during winter (4.54 +/- 2.64 mu g m- 3) followed by pre-monsoon (2.69 +/- 2.04 mu g m- 3) and post-monsoon (1.93 +/- 0.91 mu g m- 3) while lowest was observed in the monsoon (1.05 +/- 0.54 mu g m- 3). Relatively high contribution of total spectral light absorption coefficient (Abs lambda) was observed (75.94 Mm-1) at 370 nm than longer wavelength (16.86 Mm-1) at 950 nm. The BrC contribution was higher at 370 nm (32.50 Mm-1) to the total babs (lambda), while at higher wavelengths it has extensively decreased (2.54 Mm-1 at 660 nm). Seasonally, the absorption coefficient of BC and BrC was greater in winter (83.99 and 68.37 Mm-1) while lowest in monsoon (19.38 and 9.27 Mm-1), respectively. The babs BrC/babs (t) ratio revealed higher contribution of BrC in winters. The secondary brown carbon (BrCsec) and primary brown carbon (BrCpri) contributed 43.16 % and 56.88 % towards the total BrC Abs (lambda) at 370 nm with higher in winter and lowest in monsoon, respectively. BrCsec and BrCprim has shown higher contribution in evening (18.00-20.00 h) and in morning (09.00-11.00 h) hours. The average radiative forcing (RF) of BC was 36.11 +/- 6.99 Wm-2, 2.19 +/- 1.22 Wm-2 and -33.92 +/- 5.96 Wm-2 at the atmosphere (ATM), Top of the Atmosphere (TOA), and at the Surface (SUR), respectively.