共检索到 213

Liquefaction hazard analysis is crucial in earthquake-prone regions as it magnifies structural damage. In this study, standard penetration test (SPT) and shear wave velocity (Vs) data of Chittagong City have been used to assess the liquefaction resistance of soils using artificial neural network (ANN). For a scenario of 7.5 magnitude (Mw) earthquake in Chittagong City, estimating the liquefaction-resistance involves utilizing peak horizontal ground acceleration (PGA) values of 0.15 and 0.28 g. Then, liquefaction potential index (LPI) is determined to assess the severity of liquefaction. In most boreholes, the LPI values are generally higher, with slightly elevated values in SPT data compared to Vs data. The current study suggests that the Valley Alluvium, Beach and Dune Sand may experience extreme liquefaction with LPI values ranges from 9.55 to 55.03 and 0 to 37.17 for SPT and Vs respectively, under a PGA of 0.15 g. Furthermore, LPI values ranges from 25.55 to 71.45 and 9.55 to 54.39 for SPT and Vs correspondingly. The liquefaction hazard map can be utilized to protect public safety, infrastructure, and to create a more resilient Chittagong City.

期刊论文 2025-12-31 DOI: 10.1080/19475705.2025.2451126 ISSN: 1947-5705

Large-span corrugated steel utility tunnels are widely used owing to their large spatial spans and excellent mechanical properties. However, under seismic forces, they may experience significant deformation, making repair challenging and posing a serious threat to personal safety. To study the seismic performance of corrugated steel utility tunnels, an equivalent orthotropic plate was introduced, and a simplified three-dimensional refined finite element model was proposed and established. Considering the site conditions of the structure, the structural parameters, and different seismic input conditions, a detailed analysis was conducted using the endurance time analysis method. The results indicated that the simplified model agreed well with the experimental results. The seismic input conditions significantly affected the relative deformation of the structure. Under the action of P waves (compression waves) and P + SV waves (compression and shear waves), the deformation of the upper part of the structure was relatively uniform, whereas under the action of SV waves (shear waves), the deformation of the crown was more evident. The greater the burial depth of the structure, the stronger the soil-structure interaction, and the smaller the increase in relative deformation. In soft soil, the structure was more likely to be damaged and should be carefully observed. Additionally, increasing the corrugation profile of the steel plates during the design process was highly effective in enhancing the overall stiffness of the structure. Based on the above calculation results, the relative deformation rate was proposed as a quantitative index of the seismic performance of the structure, and corresponding values were recommended.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109457 ISSN: 0267-7261

This study aims to assess the effectiveness of inter-storey isolation structures in reducing seismic responses in super high-rise buildings, with a focus on analyzing the impact of soil-structure interaction (SSI) on the dynamic performance of the buildings. Utilizing the lumped parameter SR (Sway-Rocking) model, which separately simulates the overall displacement of the super high-rise structure and the rotational motion of the foundation, the dynamic characteristic parameters of the simplified model are derived. The natural frequencies of the system are calculated by solving the equations of motion. The study examines the influence of parameters such as soil shear wave velocity and structural damping ratio on the dynamic response of the structure, with particular emphasis on displacement transfer rates. The findings indicate that inter-storey isolation structures are highly effective in reducing displacement responses in super high-rise buildings, especially when considering SSI effects. Specifically, for high-damping inter-storey isolation structures, modal frequencies decrease as soil shear wave velocity decreases. In non-isolated structures, the damping ratio increases with decreasing soil shear wave velocity, whereas for isolated structures, the damping ratio decreases, with a more pronounced reduction at higher damping ratios. Increasing damping significantly reduces inter-storey displacement and damage indices. However, under low shear wave velocity conditions, inter-storey isolation structures may experience increased displacement and damage.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109445 ISSN: 0267-7261

Excessive fluorine accumulation poses a significant threat to soil ecology and even human health, yet its impact on soil fauna, especially earthworms, remains poorly understood. This study employed multi-omics and biomarkers to investigate high fluorine-induced biochemical changes that cause tissue damages in Eisenia fetida. The results demonstrated that earthworms exhibited obvious damage with fluorine addition exceeding 200 mg kg(-1), with stress levels escalating as fluorine contents increased. Further analysis of the underlying mechanisms revealed that fluorine could upregulate genes encoding mitochondrial respiratory chain complexes I-III and downregulate those for IV-V, leading to reactive oxygen species (ROS) accumulation despite antioxidant system activation. The resulting ROS interfered with deoxyribonucleoside triphosphate synthesis, prompting homologous recombination as the main DNA repair mechanism. Additionally, fluorine-induced ROS also attacked and disrupted protein and lipid related metabolisms ultimately causing oxidative damages. These cumulative oxidative damages from high fluorine contents subsequently triggered autophagy or apoptosis, resulting in tissue ulceration and epithelial exfoliation. Therefore, high fluorine could threaten earthworms by inducing ROS accumulation and subsequent biomolecule damages.

期刊论文 2025-08-15 DOI: 10.1016/j.jhazmat.2025.138706 ISSN: 0304-3894

This study examines the fragility response of an earthen embankment supported on a liquefiable deposit subjected to pulse and nonpulse ground motions. Fragility curves are developed based on two key parameters, namely, median seismic intensity and overall variability in the analysis. Such curves represent the vulnerability of an earthen embankment under two distinct types of ground motions. Numerical simulations are performed using two-dimensional finite-element analysis under plane strain conditions. The saturated sandy deposits in the foundation are modeled with the UBC3D-PLM constitutive model and calibrated with appropriate parameters. Two damage indexes are introduced: normalized embankment settlement and lateral embankment deformation. Nonlinear incremental dynamic analysis is performed for various ground motions, and fragility parameters are developed for different damage levels. The results show that pulse-type earthquakes cause more serious damage to earthen structures than nonpulse-type earthquakes, increasing the vulnerability. Further, the liquefiable layer thickness in the foundation soil plays a significant role in the vulnerability assessment of the embankment. The foundation liquefiable layer with less thickness may lead to an early onset of damage and lower the seismic demand on the embankment structure at lower damage levels. With an increase in the layer thickness, seismic demand reduces, with the drainage path playing a critical role.

期刊论文 2025-08-01 DOI: 10.1061/IJGNAI.GMENG-11437 ISSN: 1532-3641

Forest growth in tropical regions is regulated in part by climatic factors, such as precipitation and temperature, and by soil factors, such as nutrient availability and water storage capacity. We examined a decade of growth data from Eucalyptus clonal plantations from over 113,000 forest inventory plots across a 10 million-ha portion of Mato Grosso do Sul in southwestern Brazil. From this full dataset, three subsets were screened: 71,000 plots to characterize growth and yield across water table depth classes, 17,000 plots to build generalized models, and 50,000 plots for clone-based analyses. Average precipitation varied little across the region (1150 to 1270 mm yr(-1)), but water table depth ranged from less than 10 m to over 100 m. Where the water table was within 10 m of the surface, about 20 % of the total water used by trees came from this saturated zone. Water tables deeper than 50 m contributed very little to tree water use. Sites with a water table within 10 m averaged 47 m(3) ha(-1) yr(-1) in stem growth (mean annual increment, MAI) across a full rotation, compared to less than 37 m(3) ha(-1) yr(-1) for sites with water tables deeper than 50 m. Drought-induced canopy damage rose from 7 % to 30 % along the water tables depth gradient, while tree mortality rose nearly fourfold. The optimal stocking level was about 1360 trees ha(-1) where water tables were accessible, declining to 1080 trees ha(-1) where they were not. Among the 15 most planted Eucalyptus clones, increases in MAI from the lowest to highest water table depths ranged from + 4.8 to + 16.8 m(3) ha(-1) yr(-1) , reflecting significant genotype-environment interactions. On average, MAI decreased by 0.8 m(3) ha(-1) yr(-1) (ranging from 0.4 to 1.4) for every 10 m increase in water table depth. Similarly, the Site Index at base age 7 years declined from 31 m to 27 m, with an average reduction of 0.25 m per 10 m increase in water table depth. Physiographic modeling of water table depths offers useful information for forest management practices like forest inventory and planning, clonal allocation, optimized planting densities, fertilization strategies, coppice techniques, and other landscape-specific strategies like tree breeding zones.

期刊论文 2025-08-01 DOI: 10.1016/j.foreco.2025.122771 ISSN: 0378-1127

The European rabbit (Oryctolagus cuniculus) is a keystone species in Mediterranean ecosystems but also considered a pest in some agricultural areas. Despite its threatened status due to diseases and habitat loss, rabbit populations thrive in motorway verges, causing conflicts with human activities. In this study we examine the factors affecting rabbit warren abundance in motorway verges in central Spain, with implications for conservation and management. The research aimed to assess the importance of infrastructure (e.g. motorway slopes) and landscape (e.g. land use, soil depth) factors on rabbit warren abundance along 1631 km of motorway verges and to develop an index for broader-scale abundance and risk assessment. Using generalized linear mixed models, the study revealed that both infrastructure (slope) and landscape factors (soil depth, vegetation structure and land cover gradients) significantly influenced warren abundance. Rabbit warrens were more abundant in agricultural landscapes with deep soils and in intermediate slope ranges. The findings suggest that rabbit abundance in motorway verges is driven by a combination of factors involving both infrastructure features but also land use in surrounding areas. The derived model predictions were able to correctly discriminate between crop damaged and non-damaged areas, highlighting its potential as a tool for conflict mitigation and conservation planning. The study underscores the need to integrate landscape and infrastructure features into wildlife management strategies to address human-wildlife conflicts effectively. Future work should include direct population monitoring and explore broader ecological impacts, such as predator dynamics and wildlife-vehicle collisions.

期刊论文 2025-08-01 DOI: 10.1016/j.gecco.2025.e03598

Study region: Indus Basin Study focus: Meteorological droughts can result in hydrological and soil moisture droughts with severe consequences for food production. In the Indus basin there are strong upstream-downstream linkages and upstream droughts may have strong downstream impacts. This study identifies periods of meteorological, hydrological and soil moisture drought in the Indus Basin for the period 1981-2010, analyses drought propagation and evaluates the role of meltwater in mitigating drought. We used outputs from a cryosphere-hydrology model (SPHY) and a crop-hydrology model (LPJmL), analysed the Standardized Precipitation Evapotranspiration Index (SPEI), the Standardized Streamflow Index (SSI), Soil Moisture Anomaly Index (SMAI) and crop yield, which are used as drought indicators to identify periods of drought, analyse drought propagation and its impacts. New hydrological insights for the region: Propagation of meteorological drought to hydrological drought and hydrological drought to soil moisture drought shows varied patterns and lag times. There were slightly more periods of soil moisture drought when meltwater was not available than when meltwater was available for irrigation. Our results show that identifying the link between soil moisture drought and yield anomaly remains challenging due to differences in temporal resolution of the data. Nevertheless, the results highlight the critical role of meltwater in mitigating yield variability, especially in the more downstream areas. This provides insight into the potential consequences of future cryosphere degradation for food production in the future.

期刊论文 2025-08-01 DOI: 10.1016/j.ejrh.2025.102581

This paper proposes a performance-based damage assessment procedure for reinforced concrete (RC) box tunnels subjected to earthquakes, employing a pseudostatic approach and a ductility-based damage index that incorporates the relative stiffness between the structure and surround soil, widely denoted as flexibility ratio (F). Distributed plasticity frame elements and discretized spring elements were used to model tunnel structures (slabs, walls, and columns) and the reactions of surrounding soil, respectively. Two damage-state descriptors were investigated: one based on the number of yielding in the tunnel members and another on the material state. Results show that the number-of-yielding based descriptor captures global structural capacity only for specific F ranges, while drift ratio lacks consistency as a damage index across all F ranges. In contrast, the material-state descriptor and damage indexes based on curvature ductility provide effective capacity estimation and are independent of F. Therefore, combining both descriptors is recommended for seismic performance evaluation of RC box tunnels. Additionally, higher F leads to brittle failure due to better load distribution and increased yielding before the strength degradation, while lower F results in concentrated damage with less yielding. These findings highlight the necessity of seismic design considering flexibility ratio for earthquake-resistant tunnels.

期刊论文 2025-07-03 DOI: 10.1080/24705314.2025.2518757 ISSN: 2470-5314

Cement mixing techniques are widely used to improve the mechanical properties of weak soils in geotechnical engineering. However, due to the influence of various factors such as material properties, mixing conditions, and curing conditions, cement-mixed soil exhibits pronounced spatial variability which is greater than that of natural soil deposits, introducing additional uncertainty into the measurement and evaluation of its unconfined compressive strength. The purpose of this study is to propose a novel framework that integrates image analysis with Bayesian approach to evaluate the unconfined compressive strength of cement-mixed soil. A portable scanner is used to capture high-quality digital images of cement-mixed soil specimens. Mixing Index (MI) is defined to effectively evaluate mixing quality of specimens. An equation describing the relationship between water cement ratio (W/C) and unconfined compressive strength (qu) is introduced to estimate the strength of uniform specimens. To estimate the strength of non-uniform specimens, the equation is developed by integrating MI with the strength of uniform specimens. The coefficients of equations are obtained using Bayesian approach and Markov Chain Monte Carlo (MCMC) method, which effectively estimating the strength of both uniform and non-uniform specimens, with coefficients of determination (R2) of 0.9858 and 0.8745, respectively. For each specimen, a distribution of estimated strength can be obtained rather than a single fixed estimate, providing a more comprehensive understanding of the variability in strength. Bayesian approach robustly quantifies uncertainties, while image analysis serves as a convenient and non-destructive method for strength evaluation, providing accurate method for optimizing the mechanical properties of cement-mixed soil.

期刊论文 2025-07-01 DOI: 10.1016/j.compgeo.2025.107225 ISSN: 0266-352X
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共213条,22页