共检索到 8

Population growth has resulted in industrialization, massive construction, and significant mining to supply the population's ever-increasing needs. The study deals with waste material utilization for soil properties enhancement, reducing construction costs and benefiting the environment. Bottom ash, one such effluent released from thermal power plants, was used in percentages 0, 20, 50, 70, and 100% by weight. Laboratory tests were conducted, including the sand replacement method, unconfined compression test, and shear test, to study the enhanced mechanical properties of the soil, adding bottom ash to it. Initially, the property of backfill material is enhanced and further it is used behind the wall along with the geofoam placed strategically to significantly reduce lateral stresses exerted on the retaining wall further optimizing the overall structural efficiency. Geofoam of three different densities, 11 kg/m3 (11EPS), 16 kg/m3 (16EPS), and 34 kg/m3 (34EPS), has been tested to understand how the compressive strength and corresponding modulus values change with the unit weight and strain rate. It was observed that with an elevating density of geofoam, unit weight, compressive strength, shear strength, and shear strength parameters increased, whereas water absorption capacity decreased. The results of this study can be used as a reference for the quality control of geofoam. The effective use of geofoam placed behind a stiff retaining wall in reducing lateral stresses brought on by a combination of backfill material and loading conditions was evaluated using a finite element model. The results obtained through the numerical investigations were validated with the differential element method developed. Results obtained through numerical and calculated models were in good accord with a percentage error of less than 20%. The impact of geofoam density, relative thickness, and friction angle of backfill on the efficiency of geofoam in reducing lateral stresses was then investigated using a parametric analysis. Earth pressure reduction obtained for different backfill types and lower density geofoam (11 EPS) of thickness 10 cm was between 23.27 and 62.72% obtained numerically. The highest earth pressure reduction, i.e., 64.17%, was obtained for 11EPS geofoam of thickness 15 cm laid behind the bottom-ash-backfilled retaining wall. Parametric charts prepared with the obtained results can help determine the required thickness of geofoam for any desired earth pressure reduction efficiency.

期刊论文 2025-01-13 DOI: 10.1007/s40098-024-01135-w ISSN: 0971-9555

In this research, a soil reinforcement approach was explored by introducing a polyvinyl acetate polymer treatment along with sisal fiber material, considering two mean particle sizes (D50 = 0.63 and 2.00 mm). The sand specimens were mixed with varying sisal fiber contents (Fs = 0 to 0.8%) and polyvinyl acetate polymer contents (PVAc = 6%, 9%, and 12%). A series of unconfined compression tests were performed to evaluate the compressive strength of the tested materials. The experimental findings indicate a positive correlation between the concentration of polyvinyl acetate polymer and the unconfined compressive strength within the tested range. The shear strength and of the sand initially increases with rising sisal fiber contents and then decreases with further increments in sisal fiber, peaking at a maximum value when the fiber content reaches a threshold of 0.6%. The findings validate the significance of the strain energy parameter as a reliable indicator for elucidating and forecasting the mechanical characteristics of soil reinforcement. New correlations have been developed to predict variations in unconfined compressive strength and peak strain energy based on the studied parameters (Fs, PVAc, and D50). The agreement between predicted and measured characteristics validates the effectiveness of these established relationships in accurately predicting UCS and strain energy factors.

期刊论文 2025-01-01 DOI: 10.1007/s40515-024-00466-8 ISSN: 2196-7202

Geofoam, when substituting soil, reduces lateral static load due to its lightweight and compressible nature. The alignment and the orientation of the geofoam greatly affect the deflection of the wall. This paper investigates the influence of different geofoam orientations on the load-deformation characteristics of the reinforced retaining wall. Static load tests were performed when sand or geomaterial prepared from sand, bottom ash, and plastic strips were used as a backfill material. Different orientations were explored when geofoam of densities 11D, 16D, and 34D where D is the density of geofoam were laid in different directions. A layer of compressible inclusion with a thickness of 10 cm was laid either in the vertical direction alone or in both vertical and horizontal directions. Another option was to use a 10-cm-thick geofoam laid in the vertical direction and geofoam strips of thickness 2, 3, or 5 cm laid in layers. The reinforcement effect was analyzed using bearing capacity ratio, vertical displacement reduction, and wall deflection reduction. Results indicated that higher-density geofoam is more efficient in reducing settlement values and increasing bearing capacity. Lower-density geofoam excelled in wall deflection reduction. The most substantial improvements were observed for 10-cm-thick 16D geofoam laid in the vertical direction, accompanied by 5-cm-thick strips laid in three layers in the horizontal direction. This combination reduced the settlement and wall deflection to 78.23% and 98.81%, respectively.

期刊论文 2024-10-01 DOI: 10.1007/s40515-024-00401-x ISSN: 2196-7202

Pile-supported embankments have been recognized as long-standing solutions for construction in compressible soft soils. Instead of improving the physical and mechanical properties of the soft soil, this method emphasizes efforts to transfer the embankment load to a competent layer below the compressible layer. Mortar column inclusion (inklusi kolom mortar or IKM) is recognized as one of the rigid inclusions in a pile-supported embankment. The IKM combined with a load transfer platform (LTP) has been widely utilized to support embankments. Studies on pile-supported embankments have generally focused on the arching mechanisms and geotextile tensile force evaluations; however, most of these investigations were conducted on soft cohesive soils. The application of pile-supported embankment on peat has rarely been studied comprehensively. This study presents a full-scale trial embankment on peat in West Sumatra, Indonesia. The 8-m-high trial embankment was supported by a series of IKM piles and a geotextile-reinforced LTP layer; instruments were then installed in the embankment, ground, LTP, geotextile, and IKM. These instruments included a series of vibrating wire earth pressure cells, vibrating wire strain gages, fiber optic sensors, vibrating wire piezometers, settlement profilers, settlement plates, and inclinometers. The instruments provided observations on the ground movements, IKM displacements, and stresses in the materials. Comprehensive evaluations from field monitoring allowed study of load transfer via the arching mechanism, deformation pattern, and IKM performance in peat. Finite element analyses (FEAs) were also conducted for comparison and verification. The field monitoring results and FEAs showed good agreement, thereby demonstrating the potential of the proposed ground improvement method for embankment construction on peat.

期刊论文 2024-08-22 DOI: 10.3389/fbuil.2024.1379851

Due to extensive sand mining, the depletion of traditional backfill materials is a significant concern globally. Unsustainable sand mining practices, driven by construction demand, result in environmental degradation and resource depletion. Alternative materials like coal-fired power plant bottom ash and plastic waste offer cost and eco-friendly advantages for backfilling. Reinforced soil walls, compared to traditional structures, accommodate more settlement and load, providing flexibility, resistance to static and dynamic stresses, and improved aesthetics. To mitigate lateral earth pressure on retaining walls, incorporating compressible inclusions between the backfill and the wall reduces stress, ensuring long-term stability. The current investigation examines the effectiveness of sand or geomaterial prepared from sand (S), bottom ash (10-50% by dry weight), and plastic strips (0.5-1.25% by dry weight) together as backfill, behind the wall to improve the deformation characteristics of the wall and reduce lateral soil pressure. At the interface between the wall and the backfill, geofoam with densities 11D, 16D, and 34D, where D is measured in kg/m3 was used as an absorber to reduce wall lateral movement, settlement, and lateral push acting on the wall. To determine the efficacy of geofoam inclusion, parametric studies were carried out with a range of factors, including geofoam density, backfill characteristics, and surcharge load on the backfill. The model retaining wall was backfilled with either sand or geomaterial under simple strain circumstances. Plaxis 2D numerical modeling was performed for similar conditions and backfill types showed test results from both approaches exhibit excellent agreement. Results from numerical analysis and experimental method gave an optimal mix of the geomaterial (Sand + 50% BA + 1% PS) and geofoam density (34D in case of settlement reduction and 11D in case of lateral movement reduction and earth pressure reduction) that can yield maximum reduction of earth pressure with minimal deformation characteristics was suggested. When 34D geofoam was laid behind the wall backfilled with S, 50% BA, and 1% PS resulted in 172% and 178% improvement in bearing capacities for tests conducted experimentally and numerically. The corresponding settlement reduction values were 73% and 75%. The wall deflection reduction at locations 300 mm (H1) and 500 mm (H2) from the base of wall and earth pressure reduction for 11 D as CI and same backfill were about 82%, 82%, and 43% respectively for both analyses. Conclusively, the provision of geofoam as CI at the interface of the wall and backfill manifests to be a feast alternative for improving the performance of the retaining wall in terms of increasing bearing capacity, reducing settlement, lateral deformation, and earth pressure.

期刊论文 2024-08-01 DOI: 10.1007/s40891-024-00575-x ISSN: 2199-9260

Contact herbicides are widely used if rapid weeds eradication is required despite of a number of inherent disadvantages (transfer to water and soil, damage of non-target plants, promotion of resistant weeds expansion, etc.). Supramolecular chemistry can solve the problems associated with herbicide degradation and spreading, as well as suppress their harmful effects on humans and the environment. Pillar[n]arene derivatives are of special interest among other macrocyclic platforms due to their ability to implement various substrates in the macrocycle cavity. However, most of the works devoted to the interaction of pillararenes with pesticides considers binding of paraquat and its derivatives. In this work, water soluble derivatives of pillar[5]arene containing Ltryptophan residues have been proposed for binding a range of herbicides including paraquat dichloride, pyridate, 3-(methylphosphinico)propionic acid, and glufosinate-ammonium. The ester derivative of pillar[5]arene was found to be able to bind the above species. The betaine derivative showed selective and efficient interaction with pyridate (logKa = 4.02) and paraquat (logKa = 3.17). The effect of the charge of the pillar[5]arene substituent on the toxicity of the macrocyclic platform towards A549 and LEK cell lines was demonstrated. Introduction of carboxylate functions to form betaine fragments compensated for the positive charge of the macrocycle substituent and decreased its toxicity by three orders of magnitude for A549 cell line (167.0 mu M), and by two orders of magnitude for LEK cells (56.0 mu M) compared to ester derivative of pillar[5]arene (3.1 and 3.6 mu M respectively). The results obtained confirmed the prospects of the use of amino acid derivatized pillar[5] arenes in the development of new approaches to the removal of the herbicides from the environment that are demanded both in agriculture and aquaculture.

期刊论文 2024-07-20 DOI: 10.1016/j.colsurfa.2024.134050 ISSN: 0927-7757

A nuclear explosion in the rock mass medium can produce strong shock waves, seismic shocks, and other destructive effects, which can cause extreme damage to the underground protection infrastructures. With the increase in nuclear explosion power, underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge. This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi -hole explosions. First, the mechanism of using multi -hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed. The plane pressure curve at the vault of the underground protective tunnel under the action of the multi -hole simultaneous blasting was then obtained using the impact test in the rock mass at the site. According to the peak pressure at the vault plane, it was divided into three regions: the stress superposition region, the superposition region after surface re flection, and the approximate plane stress wave zone. A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi -hole blasting. The time-history curves of pressure and peak pressure partition obtained by the on-site multi -hole simultaneous blasting test and numerical simulation were compared and analyzed, to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion. This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY -NC -ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

期刊论文 2024-06-01 DOI: 10.1016/j.jrmge.2023.09.042 ISSN: 1674-7755

The semidirect effect of black carbon (BC) is studied by using a newly proposed optical property parameterization for cloud droplets with BC inclusions. Based on Atmospheric Model Intercomparison Projecttype climate model simulations, it is found that the cloud amount can be either enhanced or reduced when BC is included in clouds. The decrease of the global annual mean total cloud amount is only about 0.023%. The 3D cloud fraction distribution, however, shows larger changes which vary with latitude. A correlation between the changes of the cloud fraction and the vertical velocity is found. The cloud water path is mainly affected by low clouds and so the impact of BC on the cloud water path is particularly strong. It is shown that the BC above clouds tends to stabilize the atmosphere and enhance the cloud amount in the boundary layer. This can be used to explain the relationship between aerosol optical depth and cloud amount according to satellite data. For BC in clouds and above, the global annual mean enhancement of solar absorption is about 0.049 W m(-2) and 0.57 W m(-2), respectively. The BC semidirect radiative forcing is estimated by subtracting the BC direct forcing from the BC total radiative forcing. The global annual mean of BC direct forcing and semidirect forcing at the top of the atmosphere are 0.264 W m(-2) and 0.213 W m(-2), respectively.

期刊论文 2013-05-27 DOI: 10.1002/jgrd.50327 ISSN: 2169-897X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页