共检索到 2

Global alpine ecosystems contain a large amount of carbon, which is sensitive to global change. Changes to alpine carbon sources and sinks have implications for carbon and climate feedback processes. To date, few studies have quantified the spatial-temporal variations in ecosystem carbon storage and its response to global change in the alpine regions of the Qinghai-Tibet Plateau (QTP). Ecosystem carbon storage in the northeastern QTP between 2001 and 2019 was simulated and systematically analyzed using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. Furthermore, the Hurst exponent was obtained and used as an input to perform an analysis of the future dynamic consistency of ecosystem carbon storage. Our study results demonstrated that: (1) regression between the normalized difference vegetation index (NDVI) and biomass (coefficient of determination (R-2) = 0.974, p < 0.001), and between NDVI and soil organic carbon density (SOCD) (R-2 = 0.810, p < 0.001) were valid; (2) the spatial distribution of ecosystem carbon storage decreased from the southeast to the northwest; (3) ecosystem carbon storage increased by 13.69% between 2001 and 2019, and the significant increases mainly occurred in the low-altitude regions; (4) climate and land use (LULC) changes caused increases in ecosystem carbon storage of 4.39 Tg C and 2.25 Tg C from 2001 to 2019, respectively; and (5) the future trend of ecosystem carbon storage in 92.73% of the study area shows high inconsistency but that in 7.27% was consistent. This study reveals that climate and LULC changes have positive effects on ecosystem carbon storage in the alpine regions of the QTP, which will provide valuable information for the formulation of eco-environmental policies and sustainable development.

期刊论文 2024-04-15 DOI: http://dx.doi.org/10.3390/rs13193986

Water yield is a key ecosystem function index, directly impacting the sustainable development of the basin economy and ecosystem. Climate and land use/land cover (LULC) changes are the main driving factors affecting water yield. In the context of global climate change, assessing the impacts of climate and LULC changes on water yield in the alpine regions of the Qinghai-Tibet Plateau (QTP) is essential for formulating rational management and development strategies for water resources. On the basis of the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, we simulated and analyzed the spatiotemporal variations and the impacts of LULC and climate changes on water yield from 2001 to 2019 in the upstream regions of the Shule River Basin (USRB) on the northeastern margin of the QTP. Three scenarios were designed in the InVEST model to clearly analyze the contributions of climate and LULC changes on the variation of water yield. The first scenario integrated climate and LULC change into the model according to the actual conditions. The second scenario was simulation without LULC change, and the third scenario was without climate change. The results showed that (1) the InVEST model had a good performance in estimating water yield (coefficient of determination (R-2) = 0.986; root mean square error (RMSE) = 3.012, p < 0.05); (2) the water yield significantly increased in the temporal scale from 2001 to 2019, especially in the high altitude of the marginal regions (accounting for 32.01%), while the northwest regions significantly decreased and accounted for only 8.39% (p < 0.05); (3) the spatial distribution of water yield increased from the middle low-altitude regions to the marginal high-altitude regions; and (4) through the analysis of the three scenarios, the impact of climate change on water yield was 90.56%, while that of LULC change was only 9.44%. This study reveals that climate warming has a positive impact on water yield, which will provide valuable references for the integrated assessment and management of water resources in the Shule River Basin.

期刊论文 2020-05-01 DOI: http://dx.doi.org/10.3390/w13091250
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页