共检索到 2

The reactivation mechanism of multi-slide landslides entails high complexity, and the shear mechanical properties of high groundwater-level landslides are crucial for analyzing the formation mechanism of reactivated landslides. Taking the K39 landslide of Wenma Expressway in Yunnan Province as the research object, we identified the geological and hydrogeological conditions of the landslide, the physical and mechanical properties of the slip zone soil, and the landslide deformation law using geological mapping, geotechnical engineering, indoor testing, and in situ monitoring. The results show the landslide exhibited alternating acceleration and deceleration movements under seasonal heavy rainfall and high groundwater levels. The shear strength of the soil in the deep sliding zone was greater than that of the soil in the shallow sliding zone. The deep and shallow sliding zone soils showed a decrease in shear strength with increased water content. Moreover, the residual strength of the deep sliding zone soil displayed a negative rate with an increased shear rate. In contrast, the residual strength of the shallow sliding zone soil exhibited a positive rate. Furthermore, under different shear rates, the residual internal friction angle and cohesion of the deep sliding zone soil decreased with increased water content, whereas only the residual internal friction angle of the shallow sliding zone soil followed this pattern. Finally, we performed a sensitivity analysis using the GA-BP neural network for the ring shear test parameters of the deep and shallow sliding zone soils, which included consolidation pressure, water content, and shear rate. Our analysis revealed that the residual strength of deep sliding zone soils is most affected by water content, whereas the residual strength of shallow sliding zone soils is most affected by consolidation pressure. Furthermore, it was found that the effect of water content on residual strength is much greater than the effect of shear rate on residual strength for both deep and shallow sliding zone soils. The study results contribute to a unified understanding of how shear rate affects residual strength mechanisms, support research on shear mechanical properties for multiple landslide revivals, and inform engineering practices and policies in landslide-prone areas.

期刊论文 2024-11-01 DOI: 10.1007/s10346-024-02320-x ISSN: 1612-510X

Volatile organic compounds (VOCs), as a primary pollutant in industrial-contaminated sites or polluted soils, cause severe damage to the soil. Therefore, a comprehensive understanding of the transport of VOCs in soil is imperative to develop effective detection means and removal methods. Among them, biochar possesses potential advantages in the adsorption of VOCs, serving as an effective method for removing VOCs from soil. This review provides an overview of the VOCs within soil, their transport mechanisms, monitoring technology, and removal approach. Firstly, the historical development of the VOC migration mechanism within the capping layer is described in detail. Secondly, the in situ monitoring techniques for VOCs are systematically summarized. Subsequently, one of the effective removal technologies, a capping layer for polluted sites, is simply introduced. Following this, the potential application of a biochar-modified capping layer for the removal of VOCs is comprehensively discussed. Finally, the major challenges in the field and present prospects are outlined. The objective of this study is to furnish researchers with a foundational understanding of VOCs, their relevant information, and their removal approach, inspiring environmental protection and soil pollution control.

期刊论文 2024-03-01 DOI: 10.3390/coatings14030270
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页