共检索到 6

The MAJIS (Moons And Jupiter Imaging Spectrometer) instrument, part of the JUICE (JUpiter ICy moons Explorer) mission, is a crucial tool for investigating the composition and dynamics of Jupiter's atmosphere, and the surfaces and exospheres of its icy moons. To optimize observational planning and assess instrument performance, we have developed a radiometric simulator that accurately models MAJIS expected signal from various Jovian system targets. This simulator incorporates instrumental parameters, the spacecraft trajectory, observational constraints, and Jupiter's radiation environment. It provides essential outputs, including Signal-to-Noise Ratio (SNR) predictions and optimized instrument settings for different observational scenarios. By simulating both radiometric performance and de-spiking strategies to mitigate the impact of Jupiter radiation belt, the tool aids in refining observation strategies throughout the MAJIS operations. Several scientific applications demonstrate the simulator capabilities, from mapping the surfaces of Ganymede and Europa to detecting exospheric emissions and atmospheric composition on Jupiter. This simulator is a critical asset for maximizing MAJIS scientific return and ensuring optimal data acquisition during MAJIS exploration of the Jovian system. Study cases are presented for illustrating the capability of the simulator to model scenarios such as high-resolution mapping of Ganymede, exosphere characterization and hotspot detection on Io and Europa. These simulations confirm the potential of MAJIS for detecting key spectral features with high signal to noise ratio so as to provide major contributions to the main goals of the mission: habitability and compositional diversity in the Jovian system.

期刊论文 2025-09-15 DOI: 10.1016/j.pss.2025.106147 ISSN: 0032-0633

In this study, we calculated the travel times of a thermal probe that descends through Europa's ice shell. The ice column is simplified to a conductive layer. Using a cellular automaton model, the descent of the probe was simulated by tracking temperature changes, with cell interaction dictated by heat conduction and cell state transition rules determined by cell temperatures. Validation tests, including a soil column simulation, and comparison with experimental data, support the reliability of the model. Simulations were performed with 2 different cell sizes, 19 constant probe temperatures, and 5 ice thermal conductivities. A smaller cell size ( Delta z=3 mm) produced shorter travel times (between 22 days for a probe temperature Tp=600K and similar to 4 years for Tp=280K) than a larger cell size ( Delta z=1 m), which produced travel times between 27 years ( Tp= 600K) and similar to 103 years ( Tp= 280K). The ice shell's thermal conductivity has a modest impact on descent times. The results are generally consistent with previous approaches that used more detailed probe engineering considerations. These results suggest that a probe relying solely on heat production may traverse Europa's conductive ice shell within a mission's timeframe.

期刊论文 2024-10-10 DOI: 10.1089/ast.2024.0026 ISSN: 1531-1074

Sodium chloride is expected to be found on many of the surfaces of icy moons like Europa and Ganymede. However, spectral identification remains elusive as the known NaCl-bearing phases cannot match current observations, which require higher number of water of hydration. Working at relevant conditions for icy worlds, we report the characterization of three hyperhydrated sodium chloride (SC) hydrates, and refined two crystal structures [2NaCl center dot 17H(2)O (SC8.5); NaCl center dot 13H(2)O (SC13)]. We found that the dissociation of Na+ and Cl- ions within these crystal lattices allows for the high incorporation of water molecules and thus explain their hyperhydration. This finding suggests that a great diversity of hyperhydrated crystalline phases of common salts might be found at similar conditions. Thermodynamic constraints indicate that SC8.5 is stable at room pressure below 235 K, and it could be the most abundant NaCl hydrate on icy moon surfaces like Europa, Titan, Ganymede, Callisto, Enceladus, or Ceres. The finding of these hyperhydrated structures represents a major update to the H2O-NaCl phase diagram. These hyperhydrated structures provide an explanation for the mismatch between the remote observations of the surface of Europa and Ganymede and previously available data on NaCl solids. It also underlines the urgent need for mineralogical exploration and spectral data on hyperhydrates at relevant conditions to help future icy world exploration by space missions.

期刊论文 2023-02-21 DOI: 10.1073/pnas.2217125120 ISSN: 0027-8424

The paper discusses the formation and dynamics of the rarefied gas envelope near the icy surface of Jupiter's moon Ganymede. Being the most massive icy moon, Ganymede can form a rarefied exosphere with a relatively dense near-surface layer. The main parent component of the gas shell is water vapor, which enters the atmosphere due to thermal degassing, nonthermal radiolysis, and other active processes and phenomena on the moon's icy surface. A numerical kinetic simulation is performed to investigate, at the molecular level, the formation, chemical evolution, and dynamics of the mainly H2O- and O-2-dominant rarefied gas envelopes. The ionization processes in these rarefied gas envelopes are due to exposure to ultraviolet radiation from the Sun and the magnetospheric plasma. The chemical diversity of the icy moon's gas envelope is attributed to the primary action of ultraviolet solar photons and plasma electrons on the rarefied gas in the H2O- or O-2-dominant atmosphere. The model is used to calculate the formation and development of the chemical diversity in the relatively dense near-surface envelope of Ganymede, where an important contribution comes from collisions between parent molecules and the products of their photolysis and radiolysis.

期刊论文 2016-07-01 DOI: 10.1134/S0038094616040067 ISSN: 0038-0946

This study presents a newly identified water-rich crystalline form of sulfuric acid hydrate, H2SO4 center dot 6H(2)O, a hexahydrate. The method of formation of this material suggests that sulfuric acid hexahydrate (SAHx) could be an abundant material on the surface of Jupiter's Galilean ice moons, Europa, Ganymede, and Callisto. The structure of SAHx was determined by the combined use of synchrotron X-ray and neutron powder diffraction data. The structural arrangement of SAHx exhibits the same water layer topology that has been determined for sulfuric acid octahydrate (SAO), but differs in the stacking of this water layer and the interlayer species. SAHx is observed to form over a large range of solution compositions and displays stability over the temperature range 80 to 190K.

期刊论文 2013-09-01 DOI: 10.1002/jgre.20124 ISSN: 2169-9097

The outer planets of our solar system Jupiter, Saturn, Uranus, and Neptune are fascinating objects on their own. Their intrinsic magnetic fields form magnetic environments (so called magnetospheres) in which charged and neutral particles and dust are produced, lost or being transported through the system. These magnetic environments of the gas giants can be envisaged as huge plasma laboratories in space in which electromagnetic waves, current systems, particle transport mechanisms, acceleration processes and other phenomena act and interact with the large number of moons in orbit around those massive planets. In general it is necessary to describe and study the global environments (magnetospheres) of the gas giants, its global configuration with its large-scale transport processes; and, in combination, to study the local environments of the moons as well, e.g. the interaction processes between the magnetospheric plasma and the exosphere/atmosphere/magnetosphere of the moon acting on time scales of seconds to days. These local exchange processes include also the gravity, shape, rotation, astrometric observations and orbital parameters of the icy moons in those huge systems. It is the purpose of this chapter of the book to describe the variety of the magnetic environments of the outer planets in a broad overview, globally and locally, and to show that those exchange processes can dramatically influence the surfaces and exospheres/atmospheres of the moons and they can also be used as a tool to study the overall physics of systems as a whole.

期刊论文 2010-06-01 DOI: 10.1007/s11214-010-9653-z ISSN: 0038-6308
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-6条  共6条,1页