共检索到 45

The development of biodegradable and recyclable food packaging materials derived from biomass is a promising solution to mitigate resource depletion and minimize ecological contamination. In this study, lignin nanoparticles (LNPs) were effectively produced from bamboo powder using an eco-friendly recyclable acid hydrotrope (RAH) strategy. A sustainable CA/LNPs nanocomposite film was then designed by incorporating these LNPs into a casein (CA) matrix. The LNPs served as nucleation templates, inducing ordered hydrogen bonding and close packing of the CA chains. The addition of 5 wt% LNPs significantly enhanced the mechanical properties of the film, with tensile strength enhanced to 21.42 MPa (219.7 % improvement) and elastic modulus rising to 354.88 MPa (220.3 % enhancement) compared to pure CA film. Notably, the resultant CA/LNPs nanocomposite film exhibited recyclable recasting characteristics, maintaining a reasonable mechanical strength even after three recasting cycles. The incorporation of LNPs also decreased the water solubility of the pure CA film from 31.65 % to 24.81 % indicating some interactions are taking place, while endowing the film with superior UV-blocking ability, achieving nearly complete absorption in the 200-400 nm range. Moreover, the inherent properties of LNPs imparted improved antibacterial and antioxidant activities to the CA/LNPs nanocomposite film. Owing to its comprehensive properties, the CA/LNPs nanocomposite film effectively extended the storage life of strawberries. A soil burial degradation test confirmed over 100 % mass loss within 45 days, highlighting excellent degradability of the films. Therefore, the simple extraction of LNPs and the easily recovery of p-TsOH provide significant promise and feasibility for extending the developed methodologies in this work to rapidly promote the produced films in fields such as degradable and packaging materials.

期刊论文 2025-11-01 DOI: 10.1016/j.foodhyd.2025.111413 ISSN: 0268-005X

Due to the serious environmental pollution generated by plastic packaging, chitosan (CS)-based biodegradable films are gradually gaining popularity. However, the limited antioxidant and bacteriostatic capabilities of CS, the poor mechanical properties and water resistance of pure CS films limit their widespread adoption in food packaging. In this study, new multifunctional bioactive packaging films containing monosaccharide-modified CS and polyvinyl alcohol (PVA) were prepared to address the shortcomings of pure CS films. Initially, Maillard reaction (MR) products were prepared by conjugating chitosan with galactose/mannose (CG/CM). The successful preparation of CG/CM was confirmed using UV spectroscopy, fluorescence spectroscopy, fourier transform infrared spectroscopy (FTIR) and high-performance gel permeation chromatography (HPGPC). At an 8 mg/mL concentration, the DPPH radical scavenging activities of CM and CG were 5 and 15 times higher than that of CS, respectively. At the maximum concentration of 200 mu g/mL, both CM and CG exhibited greater inhibitory effects on the growth of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli, compared to CS. Additionally, CM and CG demonstrated significantly stronger protection against oxidative damage in Vero cells than CS. These results indicate that CG and CM possess superior antioxidant and antibacterial capabilities in comparison to CS. Then, the effects of the MR on the structures and functional properties of chitosan-based films were extensively examined. Compared with pure CS films, the MR in the CG/CM films significantly changed the film microstructure, enhanced the UV-barrier property and water resistance, and only slightly reduced thermal stability. The MR reduced the tensile strength but increased the elongation at break. Meanwhile, the composite films hold good soil degradation ability. Moreover, the CG/CM films possessed excellent antioxidant and antibacterial properties and demonstrated superior fresh-keeping capacity in the preservation of strawberries and cherry tomatoes (effectively prolonged for at least 2 days or 3-6 days). Our study indicates that CG/CM films can be used as a promising biodegradable antioxidant and antibacterial biomaterial for food packaging.

期刊论文 2025-10-01 DOI: 10.1016/j.foodhyd.2025.111269 ISSN: 0268-005X

Foundation soil treatment is a common method used to enhance soil strength in civil engineering, particularly in cold regions where ambient temperatures significantly affect soil mechanical properties. This study investigates the utilization of cement and municipal solid waste incinerator bottom ash (MSWIBA) for stabilizing silty clay under low-temperature curing conditions. Some experiments were performed to investigate the mechanical properties of cement-stabilized silty clay, varying the dosage of bottom ash (BA) and different curing temperatures. The influences of BA dosage, curing temperature and age on the shear and compressive strengths of soils were tested and analyzed. Results demonstrated that the shear strength was influenced by the comprehensive interactions among BA particles, soil particles, and ice crystals. Regardless of curing temperature and age, the shear strength of soil specimen firstly increased and then declined with BA dosage raised, with an optimal BA content range from 20 % to 30 %. Specifically, the 28-d shear strength enhancements of 2.46 %, 15.52 %, 20.20 %, and 11.33 % were observed with each successive 10 % BA addition for soil samples at 10 degrees C curing condition. Curing temperature significantly influenced shear strength, with higher temperatures promoting greater strength due to increased hydration reaction rates. Besides, the cohesion and internal friction angle of samples increased with BA dosage. Furthermore, the axial stress-strain curves illustrated a three-stage process, i.e., initial pore compression, plastic deformation, and decay stages. The compressive strength raised with both the BA dosage and curing age, with positive curing temperatures yielding higher strengths compared to sub-zero temperatures. This study elucidates the complicated mechanical behavior of BA-cement stabilizing silty clay, providing valuable insights into their performance under different curing conditions, and offering an innovative approach for foundation engineering applications in cold regions.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04661 ISSN: 2214-5095

Environmental issues caused by plastic films promote the development of biodegradability packaging materials. Copper ion-modified nanocellulose films were prepared through a one-pot reaction and systematically investigated their structural characteristics, thermal stability, mechanical properties, antibacterial activity, and biodegradability. The results indicate that the film prepared by co-soaking CNCs and copper in NaOH solution for 12 h has favorable performance. Introduction of copper ions as crosslinkers increases tensile strength of film from 36.8 MPa to 56.4 MPa and water contact angle of film from 46 degrees to 92 degrees. Copper coordination also endows the film excellent antibacterial activity, inhibiting growth of Escherichia coli and Staphylococcus aureus. Moreover, biodegradability tests indicate that although the introduction of copper ions slightly reduce biodegradation rate of films, they could still be decomposed significantly within four weeks as burying in soil. This simple process for preparing cellulosic films with water resistance, thermal stable, antibacterial ability, and biodegradable shows potential application in flexible packaging film.

期刊论文 2025-07-01 DOI: 10.1016/j.indcrop.2025.121036 ISSN: 0926-6690

Developing environmentally sustainable biodegradable multifunctional bio-composite films is an effective strategy for ensuring food chain security. This study initially prepared inclusion complexes (HP-(3-CD@EGCG) of Hydroxypropyl-(3-cyclodextrin (HP-(3-CD) and EGCG to ameliorate the stability of EGCG. Then HP-(3-CD@EGCG and different ratios of lignin were incorporated into gelatin solution through cross-linking polymerization to prepare an antioxidant, antibacterial and biodegradable composite film (HP-(3-CD@EGCG/Lignin/Gelatin). The results illustrated that HP-(3-CD crosslinked with EGCG and the encapsulation rate of EGCG reached 82.26%, and lignin increased the comprehensive characteristics of the gelatin-based composite films. The hydrophobicity of the composite films increased with increasing lignin concentration, reaching a water contact angle of 117.33 degrees; Furthermore, the mechanical characteristics and UV-light/water/oxygen barrier capacity also increased significantly. The composite films showed excellent antioxidant and antimicrobial properties, which also verified in the preservation of tomatoes and oranges, extending the shelf life of the fruit. It is worth mentioning that lignin has no effect on the biodegradability of the composite film, and the degradation rate in the soil reached 80% on the 10th day. In summary, biodegradable multifunctional environmentally friendly composite films based on gelatin and loaded with lignin and HP-(3-CD@EGCG inclusion complexes are anticipated to be applied in fruit and vegetable preservation.

期刊论文 2025-07-01 DOI: 10.1016/j.foodhyd.2025.111206 ISSN: 0268-005X

This work aims to isolate and screen the fungicidal endophytic bacterial strains for biocontrol efficacy against Phytophthora palmivora, a soil-borne pathogenic fungus that kills durian trees worldwide. Among more than 100 isolates, 6 strains were screened as potential fungicidal strains with inhibitory efficiency of 67.4-79.8%. Based on 16S rRNA gene sequencing and phylogenetic analysis, these strains were identified as Bacillus amyloliquefaciens EB.CK9, Bacillus methylotrophicus EB.EH34, Bacillus amyloliquefaciens EB.EH18, Bacillus siamensis EB.KN10, Bacillus velezensis EB.KN15 and Paenibacillus polymyxa EB.KN35. In greenhouse tests, the two strains P. polymyxa EB.KN35 and B. velezensis EB.KN15 significantly reduced the damage to diseased roots by P. palmivora (33.3 and 35.6%, respectively), increased the rate of survival of durian trees (only 20.8 and 22.9% plant death, respectively), and showed a positive effect on promoting durian plant growth. Notably, the potential fungicidal effect of last two strains against P. palmivora was recorded for the first time in this work. HPLC analysis showed that these strains can secret several plant growth-promoting compounds, including gibberellic acid (GA3), indole-3-acetic acid (IAA), kinetin, and zeatin. Of these, GA3 and zeatin were produced with a significant amount by both strains. The volatiles bio-synthesized by these isolates were also identified using GC-MS analysis, and some major volatiles were found as fungicidal agents. This study suggested that P. polymyxa EB.KN35 and B. velezensis EB.KN15 may be potential biocontrol candidates for durian P. palmivora and bio-fertilizers for the sustainable production of durian crops.

期刊论文 2025-06-15 DOI: 10.1134/S0003683824607650 ISSN: 0003-6838

BackgroundTomato yield is significantly reduced by root-knot nematodes (RKN; Meloidogyne spp.), particularly in tropical and subtropical regions. This study evaluated 20 bacterial isolates (B1-B20), belonging to the genera Bacillus, Lysobacter, Paenibacillus, and Streptomyces, from Sekem farms in Egypt for their potential to biocontrol RKN and stimulate plant growth in tomato 'Moneymaker.' The bacteria were compared to well-known microbial biocontrol agents (MBA), including Rhizobium etli G12 (B21), Pseudomonas trivialis 3Re2-7 (B22), Sporosarcina psychrophile Sd4-11 (B23), and B. subtilis Sb1-20 (B24), and a negative control, Escherichia coli JM109 (B25). The study involved seed-coated and -uncoated plants with bacterial isolates, planted in plastic pots, and inoculated with 1500 M. incognita J2 individuals per pot. Plants were grown in a saran-house during the 2022 and 2023 fall seasons, and their RKN-satisfying response (number of galls: NG and egg masses: NEM), vegetative growth, and metabolic activity were assessed 45 days after inoculation.ResultsIn seasons of 2022 and 2023, seed coating with bacterial isolates achieved a significant improvement in plant growth (coefficient of variation: CV ranging 26.8-120.2% in 2022 and 10.9-48.8% in 2023) and a reduction in RKN-satisfying response (CV for NG: 57.6 and 53.8%, respectively; and for NEM: 56.5 and 65.3%, respectively). Compared to uncoated-seed plants, the bacterial seed coating reduced NG by 0.66-74.09% in 2022 and 14.61-66.29% in 2023. Similarly, NEM decreased by 0.63-70.61% in 2022 and 41.91-77.46% in 2023. The coated-seed plants by Bacillus subtilis subsp. spizizenii (B5), Streptomyces subrutilus Wb2n-11 (B12), Streptomyces scabiei (B19), and Bacillus mojavensis (B20), along with the well-known MBAs B22 and B23, showed increased photosynthetic pigments, fresh weight of roots and shoots, stem size, and number of leaves. This growth has also led to higher dry weights in roots and shoots, and an increase in the root content of carbohydrates and proteins. Seed coating induced systemic RKN resistance by increasing polyphenols in the root. In contrast, uncoated-seed plants showed reduced foliar photosynthesis pigment and metabolic activity due to high RKN damage. Principal component analysis revealed significant correlations among the evaluated traits. Hierarchical clustering categorized bacteria isolates into five clusters based on their impact on estimated plant traits.ConclusionB5, B12, B19, B20, B22, and B23 demonstrated superior performance in both controlling RKN and stimulating vegetative growth in tomato 'Moneymaker' plants as known MBAs.

期刊论文 2025-06-13 DOI: 10.1186/s41938-025-00860-5 ISSN: 1110-1768

Natural paper-based materials are desirable candidate materials for disposable hygiene products due to their environmental sustainability, cost-effectiveness, and biodegradability. However, their practical application is often hindered by poor water stability and limited functional properties. In this study, we developed a wet-laid web formation and hot-pressing technique to produce porous, layered paper-based materials with high porosity, flexibility, water stability, and antibacterial properties. These materials were created using naturally derived components, including kapok fiber, carboxymethyl cellulose (CMC), and cationic starch (CS). The synergistic interaction between CMC and CS significantly enhances the mechanical properties and water stability, achieving a 146.09 % improvement compared to materials without CMC/CS. The resulting paper-based materials also exhibit water stability for up to 30 days. Kapok fibers contribute excellent antimicrobial properties, with >95 % inhibition of both Escherichia coli and Staphylococcus aureus. Furthermore, the materials are biodegradable in soil, completely degrading after 60 days. This study provides novel insights into the valorization of kapok fiber and presents a sustainable approach to producing high-performance paper-based materials for disposable hygiene products applications.

期刊论文 2025-06-01 DOI: 10.1016/j.ijbiomac.2025.144112 ISSN: 0141-8130

Pesticide contamination has become a major environmental concern with organophosphates such as chlorpyrifos emerging as major pollutants posing significant risks to both ecosystems and human health. Chlorpyrifos is widely used in agriculture to control pests, however due to its persistence, its accumulation in soils can lead to long-term environmental damage. The objective of this study was to isolate and characterize chlorpyrifos-degrading bacteria from a tobacco field exposed to intensive pesticide use in T & uuml;rkiye. To achieve this, a selective enrichment strategy was employed to promote the growth of chlorpyrifos-degrading microorganisms. Two distinct experimental setups were established to target both normally growing and slower-growing bacteria: the first involved a 4-week incubation with weekly subculturing as described in the literature, while the second applied an 8-week incubation with biweekly subculturing. At the end of the enrichment period, bacterial loads were compared between the two groups. Four of the nine bacterial isolates were obtained from the newly tested long-term setup. Among all isolates, members of the genus Pseudomonas exhibited the best adaptation to the prolonged enrichment conditions. Additionally, isolates belonging to the genera Klebsiella, Sphingobacterium, and Peribacillus were isolated from the normally growing group. Two isolates (AB4 & AB15), identified as Sphingobacterium thalpophilum, were determined to be novel chlorpyrifos degraders. This is the first reported study from T & uuml;rkiye focusing on the biodegradation of chlorpyrifos by native soil bacteria. The findings revealed that various ecological areas, constitute potential sources for new microbial metabolic processes and these bacterial strains can be used in bioremediation studies.

期刊论文 2025-05-23 DOI: 10.1080/10889868.2025.2510983 ISSN: 1088-9868

Rice (Oryza sativa L.), a primary food source for a substantial portion of the world's population, faces a serious threat from bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo), leading to considerable yield reductions. The excessive use of synthetic pesticides not only affects soil health but also disrupts the community of organisms living in the soil. While some pesticides degrade quickly, others persist, leading to long-term environmental damage. To address these challenges, the aqueous extract of Terminalia arjuna (T. arjuna), was investigated as a sustainable alternative for controlling Xoo. The extract was prepared using a Soxhlet apparatus, and its antibacterial activity was assessed via zone of inhibition assays and bacterial growth inhibition studies. The results revealed significant antibacterial activity, with inhibition zones of 9.1 +/- 0.76 mm at 25 mu g/ml, 14.16 +/- 1.04 mm at 50 mu g/ml, and 15.5 +/- 1.31 mm at 100 mu g/ml. Furthermore, the antibacterial mechanism of the T. arjuna extract was investigated using computational approaches. For this molecular docking of CbsA, LipA, T3SEs, PDF, and Ddl was conducted with the phytochemicals of T. arjuna. Further molecular dynamics simulation analysis shows that 3-Hydroxyspirost-8-en-11-one can inhibit Ddl and CbsA, while 9-Oximino-2,7-diethoxyfluorene and 2-Naphthalene methanol can interact with T3SEs and PDF, respectively resulting inhibition of growth of Xoo. These findings highlight T. arjuna's potential as an eco-friendly, natural pesticide to combat Xoo, offering a sustainable solution to reduce the reliance on synthetic pesticides and their detrimental environmental impact. Further field studies are needed to confirm these results.

期刊论文 2025-05-13 DOI: 10.1007/s10658-025-03063-8 ISSN: 0929-1873
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共45条,5页