The Atacama Plateau in the Central Andes (28-22 degrees S) is characterised by a dry and cold periglacial tundra due to the high altitude, low precipitation, and high evaporation. Endogenous freshwater sources - e.g.: seasonal streams and lakes, subsurface reservoirs, surface snow/ice patches - are available, though they are highly sensitive to climatic changes. The near surface hydrological network is highly modified by the distribution and seasonal evolution of perennial frozen ground, i.e. permafrost, which is also expected to change in the future. The interplay between permafrost and hydrology, especially in relation to future climate change, is poorly explored. To address this issue, we carry out long-term ground temperature measurement and modelling, snow coverage survey, tritium- and stable isotope analysis of surface waters on the Ojos del Salado Massif, which is representative of high altitude mountains on the Atacama Plateau. According to our results, a highly transient surface hydrological network - lakes, springs and streams - forms during each summer where permafrost is widespread and ground thawing (i.e. active layer) is present (similar to 4900-6500 m a.s.l.). In this system, the water is of meteoric origin and relatively young (<10 years). The development of the network is strongly influenced by the active layer, which plays a crucial role in storing, seeping, and discharging groundwater. However, future permafrost degradation is expected to reduce the seasonal presence of shallow water, and hence, modify groundwater recharge patterns.
In the mountainous headwaters of the Colorado River episodic dust deposition from adjacent arid and disturbed landscapes darkens snow and accelerates snowmelt, impacting basin hydrology. Patterns and impacts across the heterogenous landscape cannot be inferred from current in situ observations. To fill this gap daily remotely sensed retrievals of radiative forcing and contribution to melt were analyzed over the MODIS period of record (2001-2023) to quantify spatiotemporal impacts of snow darkening. Each season radiative forcing magnitudes were lowest in early spring and intensified as snowmelt progressed, with interannual variability in timing and magnitude of peak impact. Over the full record, radiative forcing was elevated in the first decade relative to the last decade. Snowmelt was accelerated in all years and impacts were most intense in the central to southern headwaters. The spatiotemporal patterns motivate further study to understand controls on variability and related perturbations to snow water resources.
Climate change drives disturbance in hydrology and geomorphology in terrestrial polar landscapes underlain by permafrost, yet measurements of, and theories to understand, these changes are limited. Water flowing from permafrost hillslopes to channels is often modulated by water tracks, zones of enhanced soil moisture in unchannelized depressions that concentrate water flow downslope. Water tracks, which dominate hillslope hydrology in some permafrost landscapes, lack a consistent definition and identification method, and their global occurrence, morphology, climate relationships, and geomorphic roles remain understudied despite their role in the permafrost carbon cycle. Combining a literature review with a synthesis of prior work, we identify uniting and distinguishing characteristics between water tracks from disparate polar sites with a toolkit for future field and remotely sensed identification of water tracks. We place previous studies within a quantitative framework of top-down climate and bottom-up geology controls on track morphology and hydrogeomorphic function. We find the term water track is applied to a broad category of concentrated suprapermafrost flowpaths exhibiting varying morphology, degrees of self-organization, hydraulic characteristics, subsurface composition, vegetation, relationships to thaw tables, and stream order/hillslope position. We propose that the widespread occurrence of water tracks on both poles across varying geologic, ecologic, and climatic factors implies that water tracks are in dynamic equilibrium with the permafrost environment but that they may experience change as the climate continues to warm. Current knowledge gaps include these features' trajectories in the face of ongoing climate change and their role as an analog landform for an active Martian hydrosphere.
There is 78 % permafrost and seasonal frozen soil in the Yangtze River's Source Region (SRYR), which is situated in the middle of the Qinghai-Xizang Plateau. Three distinct scenarios were developed in the Soil and Water Assessment Tool (SWAT) to model the effects of land cover change (LCC) on various water balance components. Discharge and percolation of groundwater have decreased by mid-December. This demonstrates the seasonal contributions of subsurface water, which diminish when soil freezes. During winter, when surface water inputs are low, groundwater storage becomes even more critical to ensure water supply due to this periodic trend. An impermeable layer underneath the active layer thickness decreases GWQ and PERC in LCC + permafrost scenario. The water transport and storage phase reached a critical point in August when precipitation, permafrost thawing, and snowmelt caused LATQ to surge. To prevent waterlogging and save water for dry periods, it is necessary to control this peak flow phase. Hydrological processes, permafrost dynamics, and land cover changes in the SRYR are difficult, according to the data. These interactions enhance water circulation throughout the year, recharge of groundwater supplies, surface runoff, and lateral flow. For the region's water resource management to be effective in sustaining ecohydrology, ensuring appropriate water storage, and alleviating freshwater scarcity, these dynamics must be considered.
In Arctic landscapes, the active layer forms a near-surface aquifer on top of the permafrost where water and nutrients are available for plants or subject to downslope transport. Warmer summer air temperatures can increase the thickness of the active layer and alter the partitioning of water into evapotranspiration and discharge by increasing the potential evapotranspiration, the depth to the water table, and changing the flow paths but the interacting processes are poorly understood. In this study, a numerical model for surface- and subsurface cryo-hydrology is calibrated based on field observations from a discontinue permafrost area in West Greenland considered sensitive to future climate changes. The validated model is used to simulate the effect of three summers with contrasting temperature regimes to quantify the variations in the active layer thickness, the resulting changes in the water balance, and the implications on solute transport. We find that an increase of summer air temperature by1.6 degrees C, under similar precipitation can increase the active layer thickness by 0.25 m, increase evapotranspiration by 5%, and reduce the total discharge compared to a colder summer by 9%. Differences in soil moisture and evapotranspiration between upslope and downslope were amplified in a warm summer. These hydrological differences impact solute transport which is 1.6 times faster in a cold summer. Surprisingly, we note that future warmer summer with increase in permafrost thaw may not necessary lead to an increase in discharge along a hill slope with underlying permafrost.
This study uses a new dataset on gauge locations and catchments to assess the impact of 21st-century climate change on the hydrology of 221 high-mountain catchments in Central Asia. A steady-state stochastic soil moisture water balance model was employed to project changes in runoff and evaporation for 2011-2040, 2041-2070, and 2071-2100, compared to the baseline period of 1979-2011. Baseline climate data were sourced from CHELSA V21 climatology, providing daily temperature and precipitation for each subcatchment. Future projections used bias-corrected outputs from four General Circulation Models under four pathways/scenarios (SSP1 RCP 2.6, SSP2 RCP 4.5, SSP3 RCP 7.0, SSP5 RCP 8.5). Global datasets informed soil parameter distribution, and glacier ablation data were integrated to refine discharge modeling and validated against long-term catchment discharge data. The atmospheric models predict an increase in median precipitation between 5.5% to 10.1% and a rise in median temperatures by 1.9 degrees C to 5.6 degrees C by the end of the 21st century, depending on the scenario and relative to the baseline. Hydrological model projections for this period indicate increases in actual evaporation between 7.3% to 17.4% and changes in discharge between + 1.1% to -2.7% for the SSP1 RCP 2.6 and SSP5 RCP 8.5 scenarios, respectively. Under the most extreme climate scenario (SSP5-8.5), discharge increases of 3.8% and 5.0% are anticipated during the first and second future periods, followed by a decrease of -2.7% in the third period. Significant glacier wastage is expected in lower-lying runoff zones, with overall discharge reductions in parts of the Tien Shan, including the Naryn catchment. Conversely, high-elevation areas in the Gissar-Alay and Pamir mountains are projected to experience discharge increases, driven by enhanced glacier ablation and delayed peak water, among other things. Shifts in precipitation patterns suggest more extreme but less frequent events, potentially altering the hydroclimate risk landscape in the region. Our findings highlight varied hydrological responses to climate change throughout high-mountain Central Asia. These insights inform strategies for effective and sustainable water management at the national and transboundary levels and help guide local stakeholders.
The Tibetan Plateau (TP) is a region rich in extensive frozen ground and the source of many major Asian rivers. However, how soil freeze/thaw (F/T) dynamics influence runoff production at the catchment scale in the TP is poorly understood. This study employs a process-based permafrost hydrology model with a new soil parameterization to investigate soil F/T dynamics and their impact on runoff in a TP permafrost watershed, i.e., the source region of Yangtze River (SRYR). The revised model separates soil evaporation and plant transpiration, and accounts for the influence of soil gravel and organic carbon content, as well as variation in saturated hydraulic conductivity along the soil profile. Validation results demonstrate that the revised model accurately simulates daily soil temperature (mean RMSE of 1.3 degrees C), soil moisture (mean ubRMSE of 0.05 cm3 cm-3), and runoff discharge (NSE = 0.82). The results reveal different altitudinal patterns of warming trend between permafrost and seasonally frozen ground (SFG). Warming rates in SFG area increase monotonously with elevation, while a turning point is observed in permafrost region around 4800 m. With active layer deepening, deep-soil water content increases but primarily replenishes soil water storage rather than directly contributing to runoff recharge, while rootzone and the middle part of the active layer become drier. Soil F/T cycles in the permafrost region exert stronger influences on runoff process compared to SFG. Delayed soil thaw onset generally results in higher spring runoff coefficient, while delayed soil freeze onset is related to slower runoff recession. The freezing zero-curtain period is likely to impact the continuity of runoff recession processes by affecting the connectivity of groundwater flow channels. These findings uncover the regulatory mechanisms of soil F/T dynamics on runoff production and river discharge characteristics, providing a fundamental basis for predicting permafrost hydrology responses to future climate change in the TP.
Improving our understanding of streamwater age knowledge is critical for revealing the complex hydrological processes in alpine cryosphere catchments. However, few studies on water age have been conducted in alpine cryosphere catchments due to the complicated and inclement environment. In this study, the Buqu catchment, a typical alpine catchment covered by glaciers and permafrost on the central Tibetan Plateau (TP), was selected as the study area. Using the sine-wave ap-proach anda gamma model based on the seasonal cycle of stable isotopes in water, the young water fraction (Fyw) and mean transit time (MTT) of the Buqu catchment outlet and 23 sub-catchments was estimated to comprehensively reveal the potential driving mechanism of water age variability. The streamwater MTT for the entire catchment was 107 days, and 15.1 % of the streamwater was younger than 41 days on average. The estimated water age showed significant spatial heterogeneity with shorter water ages in high-elevation and glacier catchments and longer water ages in low-elevation and non-glacier catchments. Precipitation was the primary driver for spatial variations in water age, while the thickness of the permafrost active layer may function as an intermediate hub to drive water age variability. Mechanically, the thick-ness of the permafrost active layer controls the water ages by modifying the flow direction and length of water flow path. Spatially, this control mechanism is indirectly driven by the elevation gradient. The TDS concentration in streamwater is significantly related to water age, thus revealing a close link between water quality and hydrology. Our findings suggest that cryosphere retreats likely alter water age, thereby slowing water circulation rates and affecting water quality security under global warming. This study provides insights into the evolution of water ages, thereby deepening our understanding of the hydrological processes and guiding the protection of water resources in alpine headwater catchments.
Permafrost is strongly associated with human well-being and has become a frontier of cryospheric science. Professor Guodong Cheng is one of the most outstanding geocryologists in China. He was elected as an academician of the Chinese Academy of Sciences in 1993 and served as the president of the International Permafrost Association from 1993-1998. In the early 1980s, Professor Cheng proposed the hypothesis of the repeated-segregation mechanism for the formation of thick-layered ground ice near the permafrost table. Subsequently, in the early 2000s, he proposed the proactive roadbed cooling concept and led the successful development of a series of specific engineering measures that were fully applied in the Qinghai-Tibet Railway Project. Furthermore, he developed a conceptual model to describe the influences of changing permafrost on the groundwater system and discovered the sink-holing effect (channeling with improved hydraulic conductivity of warming permafrost). Professor Cheng has also developed theories on the three-dimensional zonation and proposed a classification system and an altitude model for high-altitude permafrost distribution. On this special occasion of Professor Cheng's 80th birthday, this paper summarizes his outstanding achievements on permafrost science, hoping the permafrost research community will carry forward the momentum to further advance permafrost science worldwide.
Rising temperatures entail important changes in the soil hydrologic processes of the northern permafrost zone. Using the ICON-Earth System Model, we show that a large-scale thaw of essentially impervious frozen soil layers may cause a positive feedback by which permafrost degradation amplifies the causative warming. The thawing of the ground increases its hydraulic connectivity and raises drainage rates which facilitates a drying of the landscapes. This limits evapotranspiration and the formation of low-altitude clouds during the snow-free season. A decrease in summertime cloudiness, in turn, increases the shortwave radiation reaching the surface, hence, temperatures and advances the permafrost degradation. Our simulations further suggest that the consequences of a permafrost cloud feedback may not be limited to the regional scale. For a near-complete loss of the high-latitude permafrost, they show significant temperature impacts on all continents and northern-hemisphere ocean basins that raise the global mean temperature by 0.25 K. Landscapes in the Arctic and subarctic zone are often very wet with highly water saturated soils and an extensive lake- and wetland cover. To some extent, this is due to the perennially frozen soil layers that underlay large parts of these regions and inhibit the movement of water through the ground. Thus, a thawing of the frozen soils, caused by rising temperatures, may ultimately lead to a drying of the landscapes. Here, we use simulations with the ICON-Earth System Model to show that such a drying increases regional temperatures via an atmospheric feedback: During the warm season, dryer conditions at the surface reduce the moisture transport into the atmosphere. This decreases the relative humidity in the boundary layer and the low-altitude cloud cover. Since clouds reflect more sunlight than the snow-free land surface, the reduced cloudiness increases the available energy, hence, temperatures and advances the thawing of the ground. Higher temperatures in the Arctic and subarctic zone, in turn, have important consequences for the net energy exchange between equatorial and polar regions. Thus, the effects of a large-scale drying of high-latitude soils may not be limited to the regional scale but could notably increase global mean temperatures. Advanced degradation of permafrost may facilitate large-scale landscape drying Dependency of clouds on terrestrial hydrology allows for feedback between permafrost thaw, diminished cloudiness and rising temperatures This feedback could amplify global warming notably