共检索到 2

This study analyzes the effects of Hurricane Eta on the Chiriqui Viejo River basin, revealing the significant impact of extreme weather events on the hydrological dynamics of the region. The maximum rainfall recorded on November 4, 2020, reached 223.8 mm, while the flow in Paso Canoa reached 638.03 m3/s, demonstrating the magnitude of the event and the inability of the basin to handle such high volumes of water. Through a detailed analysis, it was observed that soil saturation resulted in direct runoff of up to 70.0 mm that same day, which shows that the infiltration capacity of the soil was quickly exceeded. Despite the damage observed, there are currently no advanced hydrological studies on extreme events in critical basins such as the Chiriqui Viejo River. This lack of research reflects a serious lack of planning and assessment of the risks associated with phenomena of this magnitude. One of the most critical problems found is the lack of specialized hydrology professionals, who are essential to carry out detailed studies and ensure sustainable management of water resources. In a context where climate change increases the frequency and intensity of extreme events, the absence of hydrologists in the region puts the resilience of the basin to future disasters at risk. The basin's hydraulic system demonstrated its inability to handle high flows, underscoring the need to improve flood control and water retention infrastructure. In addition, the lack of effective hydrological planning and coordination in the management of hydraulic infrastructures compromises both the safety of downstream communities and the sustainability of hydroelectric reservoirs, vital for the region.

期刊论文 2025-06-01 DOI: 10.1016/j.scca.2025.100087

Large differences in future climatic scenarios found when different global circulation models (GCMs) are employed have been extensively discussed in the scientific literature. However, differences in hydrological responses to the climatic scenarios resulting from the use of different hydrological models have received much less attention. Therefore, comparing and quantifying such differences are of particular importance for the water resources management of a catchment, a region, a continent, or even the globe. This study investigates potential impacts of human-induced climate change on the water availability in the Dongjiang basin, South China, using six monthly water balance models, namely the Thornthwaite-Mather (TM), Vrije Universitet Brussel (VUB), Xinanjiang (XAJ), Guo (GM), WatBal (WM), and Schaake (SM) models. The study utilizes 29-year long records of monthly streamflow and climate in the Dongjiang basin. The capability of the six models in simulating the present climate water balance components is first evaluated and the results of the models in simulating the impact of the postulated climate change are then analyzed and compared. The results of analysis reveal that (1) all six conceptual models. have similar capabilities in reproducing historical water balance components; (2) greater differences in the model results occur when the models are used to simulate the hydrological impact of the postulated climate changes; and (3) a model without a threshold in soil moisture simulation results in greater changes in model-predicted soil moisture with respect to alternative climates than the models with a threshold soil moisture. The study provides insights into the plausible changes in basin hydrology due to climate change, that is, it shows that there can be significant implications for the investigation of response strategies for water supply and flood control due to climate change. (c) 2007 Elsevier B.V. All rights reserved.

期刊论文 2007-04-07 DOI: 10.1016/j.jhydrol.2007.01.010 ISSN: 0022-1694
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页