共检索到 2

Freeze-thaw cycles in seasonally frozen soil affect the boundary conditions of aqueducts with pile foundations, consequently impacting their seismic performance. To explore the damage characteristics and seismic behaviour of aqueduct bent frames in such regions, a custom testing apparatus with an integrated cooling system was developed. Two 1/15 scale models of reinforced concrete aqueduct bent frames with pile foundations were constructed and subjected to pseudo-static testing under both unfrozen and frozen soil conditions. The findings revealed that ground soil freezing has minimal impact on the ultimate bearing capacity and energy dissipation of the bent frame-pile-soil system, but significantly enhances its initial stiffness. Additionally, the frozen soil layer exerts a stronger embedding effect on the pile cap, ensuring the stability of the pile foundation during earthquakes. However, under large seismic loads, aqueduct bent frames experience greater damage and residual deformation in frozen soil compared to unfrozen soil conditions. Therefore, the presence of a seasonally frozen soil layer somewhat compromises the seismic performance of aqueduct bent frames. Subsequently, a finite element model considering pile-soil interaction (PSI) and frozen soil hydro-thermal effects was developed for aqueduct bent frames and validated against experimental results. This provides an effective method for predicting their seismic behaviors in seasonally frozen soil regions. Furthermore, based on the seismic damage characteristics of aqueduct bent frame with pile foundations observed in pseudo-static tests, a novel selfadaptive aqueduct bent frame system was designed to mitigate the adverse effects of seasonally frozen soil layer on seismic performance. This system is rooted in the principle of balancing resistance with adaptability, rather than solely depending on resistance. The seismic performance of this innovative system was then discussed, providing valuable insights for future seismic design of reinforced concrete aqueduct bent frames with pile foundations in seasonally frozen soil regions.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109491 ISSN: 0267-7261

The long-term safety and durability of anchor systems are the focus of slope maintenance management and sustainable operation. This study presents the observed temperature, humidity, and anchor bolt stress at varying depths from four-year remote real-time monitoring of the selected loess highway cut-slope. The potential correlation between slope hydrothermal environment and anchor stress is analyzed. The anchor serviceability and durability were evaluated by establishing a time-dependent mathematical model of axial forces. The results show that the slope shallow loess exhibited hydro-thermal fluctuations annually during operation, subjecting the loess to continuous dry-wet cycles. Soil elastic deformation induces anchor axial force fluctuations due to hydro-thermo effects, while damage creep leads to the annual increase in axial force peaks and valleys. The increase in axial force is more significant at the upper slope and lower slope, thereby increasing the risk of retrogressive landslides in loess slopes. The time-dependent model of anchor axial force composing negative exponential and sine functions was proposed. The cyclic amplitudes, lower limits, and periods of temperature and humidity in slope can determine the model coefficients. The development patterns of axial force are classified into stable type, slow growth type, and accelerated growth type according to the characteristics of the model coefficients. Predicted results indicate that the anchor axial forces are lower than the landslide threshold within 30 years of slope operation, ensuring long safety and serviceability. Results provide a reference for the long-term safety evaluation and formulation of maintenance plans for loess slopes reinforced by anchor systems.

期刊论文 2025-01-02 DOI: 10.1038/s41598-024-84106-8 ISSN: 2045-2322
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页