共检索到 2

Engineering geological investigations indicate that confined water exists in the stratum during the warm season in permafrost regions and in underground engineering employing artificial ground freezing (AGF) to isolate groundwater, causing significant upward deformation of the stratum and frost damage to engineering structures. However, limited studies have explored the effect and mechanism of hydraulic pressure on ice growth during soil freezing upwards. Therefore, this study designs and conducts four groups of bottom-up freezing tests under various hydraulic pressures, and develops a model to investigate the mechanism of hydraulic pressure on ice growth, based on the theory that liquid water migrates towards the ice lens through an unfrozen water film. The experimental results, including thermal regime, frost heave, cryo-structure, and water redistribution are analyzed systematically, which show the frozen depth, frost heave increment, ice lens thickness, and the layered water content in the samples all increase with hydraulic pressure. The model is validated with experimental data, and the calculation results demonstrate that the ice growth rate increases with hydraulic pressure due to a higher pore water pressure (PWP) gradient in the unfrozen water film. Thus, the characteristics and mechanisms of ice growth in the stratum, accelerated by hydraulic pressure, are clarified. Finally, the applications and implications of this study to engineering geology are discussed, which contribute to a better understanding of ground ice formation in permafrost regions and frost damage prevention in underground engineering performing AGF.

期刊论文 2025-05-08 DOI: 10.1016/j.enggeo.2025.108035 ISSN: 0013-7952

Coarse-grained soil is generally used in cold-regions infrastructure to mitigate the frost damage to engineering because of its non-frost heave susceptibility; however, in certain cases, coarse-grained fill has been observed to experience frost heave under hydraulic pressure. To reveal the mechanism of hydraulic pressure on coarsegrained soil frost heave, a model was developed to describe the frost heave in coarse-grained soil, incorporating the migration of external water to ice lenses through an unfrozen water film under hydraulic pressure, then the model was validated using published results. Subsequently, based on the validated model, the influence mechanism of hydraulic pressure and fine content on coarse-grained soil frost heave were analyzed. The calculation results demonstrate that the hydraulic pressure aggravates frost heave by increasing the pore water pressure gradient in the unfrozen water film. Additionally, frost heave rate increases with fine content because of the thickening of the film, which facilitates water flow and ice segregation. Furthermore, gray correlation analysis demonstrated that the impact of hydraulic pressure on frost heave in coarse-grained soil is more significant than that of fine content. Finally, the study discusses frost damage that occurred in high-speed railway subgrade and proposes the preventive measures.

期刊论文 2025-05-01 DOI: 10.1016/j.trgeo.2025.101590 ISSN: 2214-3912
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页