Shear strength of hydrate-bearing sediment is an essential parameter for assessing landslide potential of hydrate reservoirs under exploration conditions. However, the characteristics and simulation of this shear strength under varying dissociation conditions have not been thoroughly investigated. To this end, a series of triaxial compression tests were first carried out on sediments with varying initial hydrate saturations along dissociation pathways. Combining measured data with microscale analysis, the underlying mechanism for the evolution of shear strength in hydrate-bearing sediment was studied under varying partial dissociation pathways. Moreover, a shear strength model for hydrate-bearing sediment was proposed, taking into account the hydrate saturation and the unhydrated water content. Apart from the parameters derived from the hydrate characteristic curve, only one additional model parameter is required. The proposed model was validated using measured data on hydrate sediments. The results indicate that the proposed model can effectively capture the shear strength behavior of hydrate-bearing sediment under varying dissociation paths. Finally, a sensitivity analysis of the model parameters was conducted to characterize the proposed model. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
Sandy hydrate reservoirs are considered an ideal target for the extraction of marine natural gas hydrates (NGH). However, engineering geological risks, including reservoir sand production and seabed subsidence during the extraction process, present a significant challenge. In 2019, China discovered a high-concentration sandy NGH reservoir with favorable commercial development potential in the Qiongdongnan Basin of the South China Sea, establishing the region as a key focus for future exploration and development efforts. A thorough comprehension of macro-meso mechanical properties of this specific sandy NGH reservoir is essential for the safe and efficient extraction of hydrates. In this study, a novel method is proposed to calculate hydrate saturation of hydrate-bearing sandy sediments (HBSS) with hexagonal close-packed state. A series of undrained biaxial compression with flexible boundary show that hydrate cementation enhances the strength of the sample. However, an excessively high hydrate saturation is likely to induce strain softening, whereas an increase in confining pressure helps to mitigate strain softening. Hydrate cementation promotes the formation of abundant force chains. The inhomogeneous displacement, sliding, and relative rotation of the particles are the primary factors contributing to the formation of X-shaped shear bands, which is related to cemented bond breakage. The primary cause of hydrate cementation failure is tensile stress failure. External loading induces force chains to undergo buckling, fracturing, and restructuring, which governs fabric development. The research outcomes offer novel insights into the inhomogeneous deformation and macro-meso mechanical properties of HBSS at the particle-scale.