This study evaluated the usability and effectiveness of robotic platforms working together with foresters in the wild on forest inventory tasks using LiDAR scanning. Emphasis was on the Universal Access principle, ensuring that robotic solutions are not only effective but also environmentally responsible and accessible for diverse users. Three robotic platforms were tested: Boston Dynamics Spot, AgileX Scout, and Bunker Mini. Spot's quadrupedal locomotion struggled in dense undergrowth, leading to frequent mobility failures and a System Usability Scale (SUS) score of 78 +/- 10. Its short, battery life and complex recovery processes further limited its suitability for forest operations without substantial modifications. In contrast, the wheeled AgileX Scout and tracked Bunker Mini demonstrated superior usability, each achieving a high SUS score of 88 +/- 5. However, environmental impact varied: Scout's wheeled design caused minimal disturbance, whereas Bunker Mini's tracks occasionally damaged young vegetation, highlighting the importance of gentle interaction with natural ecosystems in robotic forestry. All platforms enhanced worker safety, reduced physical effort, and improved LiDAR workflows by eliminating the need for human presence during scans. Additionally, the study engaged forest engineering students, equipping them with hands-on experience in emerging robotic technologies and fostering discussions on their responsible integration into forestry practices. This study lays a crucial foundation for the integration of Artificial Intelligence (AI) into forest robotics, enabling future advancements in autonomous perception, decision-making, and adaptive navigation. By systematically evaluating robotic platforms in real-world forest environments, this research provides valuable empirical data that will inform AI-driven enhancements, such as machine learning-based terrain adaptation, intelligent path planning, and autonomous fault recovery. Furthermore, the study holds high value for the international research community, serving as a benchmark for future developments in forestry robotics and AI applications. Moving forward, future research will build on these findings to explore adaptive remote operation, AI-powered terrain-aware navigation, and sustainable deployment strategies, ensuring that robotic solutions enhance both operational efficiency and ecological responsibility in forest management worldwide.
Appropriate environmental sensing methods and visualization representations are crucial foundations for the in situ exploration of planets. In this paper, we developed specialized visualization methods to facilitate the rover's interaction and decision-making processes, as well as to address the path-planning and obstacle-avoidance requirements for lunar polar region exploration and Mars exploration. To achieve this goal, we utilize simulated lunar polar regions and Martian environments. Among them, the lunar rover operating in the permanently shadowed region (PSR) of the simulated crater primarily utilizes light detection and ranging (LiDAR) for environmental sensing; then, we reconstruct a mesh using the Poisson surface reconstruction method. After that, the lunar rover's traveling environment is represented as a red-green-blue (RGB) image, a slope coloration image, and a theoretical water content coloration image, based on different interaction needs and scientific objectives. For the rocky environment where the Mars rover is traveling, this paper enhances the display of the rocks on the Martian surface. It does so by utilizing depth information of the rock instances to highlight their significance for the rover's path-planning and obstacle-avoidance decisions. Such an environmental sensing and enhanced visualization approach facilitates rover path-planning and remote-interactive operations, thereby enabling further exploration activities in the lunar PSR and Mars, in addition to facilitating the study and communication of specific planetary science objectives, and the production and display of basemaps and thematic maps.
Returning to the Moon has kept gaining interest lately in the scientific community as a mandatory step for answering a cohort of key scientific questions. This paper presents a novel Lunar mission design to demonstrate enabling technologies for deep-space exploration, in accordance with the Global Exploration Roadmap and the National Research Council. This mission, named ALCIDES, takes advantage of some of the systems that are currently under development as a part of the HERACLES exploration architecture: these include the Orion module, the Space Exploration Vehicle, the Boeing Reusable Lander, the Ariane 6, the Falcon Heavy, the Space Launch System, as well as the Evolvable Deep-Space Habitat placed in EML2. A consistent part of the efforts in designing the ALCIDES mission accounts for innovative exploration scenarios: by analysing state of the art in robotics and planetary exploration, we introduce a mission architecture in which robots and humans collaborate to achieve several tasks, both autonomously and through cooperation. During this mission, high-performance mobility, extravehicular activity and habitation capabilities would be carried out and implemented. This project aims to demonstrate the human capability to live and work in the Lunar environment through the development of a long-term platform. We selected the Amundsen-Ganswindt basin as the landing site for multiple reasons: the possible presence of permanently shadowed regions, its position within the South Pole and its proximity to the Schrodinger basin. The main objectives of the ALCIDES mission are to study the Lunar cold trap volatiles, to gain understanding of the Lunar highlands geology through sampling and in-situ measurements and to study Human-Robotic interactions. In addition, factors such as psychology, legal issues and outreach regarding this mission were also considered. In particular, four traverses connecting the Amundsen crater with the Schrodinger basin were proposed, three of which to be performed by a tele-operated rover, and the remaining one to be carried out by a human crew with rover assistance. During these traverses, the rover will collect samples from several points of interest as well as perform in-situ measurements with a suite of instruments on board, helping to locate a convenient place for future human habitation. The ALCIDES mission results will help the scientific community to better understand the Moon and to take advantage of its resources for future space exploration. Gaining this knowledge will allow us to move forward in the development of systems and capabilities for manned missions to Mars and beyond.