Cohesion provided by pore ice is a critical component influencing the mechanical behavior of frozen soil, as it not only cements soil particles together but also shares the external loads with them. In view the crucial role of cohesion in developing an elastoplastic model for frozen soil, this paper employs triaxial tensile strength (TTS) to characterize cohesion and proposes a TTS degradation expression driven by plastic shear strain. By directly incorporating TTS into the yield function, a framework for a Non-Orthogonal Elastoplastic (NOEP) constitutive model that accounts for cohesion degradation in frozen soil is developed. Furthermore, a hardening parameter incorporating TTS is introduced and used in conjunction with the modified yield function to determine the magnitude of the plastic strain increment. The non-orthogonal plastic flow rule is used to determine the direction of the plastic strain increment based on the modified yield function. Ultimately, by combining the elastic strain increment determined by Hooke's rule, a NOEP constitutive model incorporating cohesion degradation for frozen soil is established. The validity and rationality of the proposed NOEP model in representing the stress-strain relationship of frozen soil are confirmed through comparisons with test results of frozen soil under the triaxial compression conditions. The proposed constitutive model provides a more comprehensive and precise representation of frozen soil's response to external loading, enhancing the understanding of its shear deformation behavior and providing a robust theoretical foundation for engineering design and construction in cold regions.
The plastic strain of calcareous sand is related to its stress path and particle breakage, rendering the hardening process complex. An expression for the stress-path-dependence factor was developed by analyzing the variations in plastic strain across different initial void ratios. A stress-path-independent hardening parameter was derived from the modified plastic work and was subsequently validated. Constant-proportion loading tests on calcareous sands confirmed the applicability of this hardening model. The results indicated that under isotropic compression, the plastic volumetric strain increased with increasing average effective stress, albeit at a decreasing growth rate. A positive linear relationship was observed between the volumetric strain modulus and relative breakage index. The proposed hardening parameter effectively captured the particle breakage and stress path effects in calcareous sand and was validated through theoretical calculations and laboratory tests, offering valuable insights into the mechanical behavior of fragile granular soils.