The economic benefits of rice-wheat (RW) and rice-oilseed rape (RO) rotation in China are low. By contrast, the rice-edible mushroom Stropharia rugosoannulata (RE) rotation yields significantly higher economic benefits than RW and RO rotations. Furthermore, RE rotation can avoid air pollution caused by rice straw burning and has been widely adopted in China. Nevertheless, it remains unclear how the rotation affects CH4 and N2O emissions and global warming potential. Herein, three rice-based rotations, including RW, RO and RE rotations, were conducted in central China. The RE rotation resulted in the lowest CH4 emission from the winter crop season as well as the lowest annual N2O emission from the rice seasons among the three rotations. Moreover, compared with the RW and RO rotations, the RE rotation significantly increased the soil organic carbon content by 30.2 % and 31.2 %, and the rice yield by 16.0 % and 17.0 %, respectively. Hence, the RE rotation significantly reduced the net global warming potential by 2008.4 % and 696.5 % compared with the RW and RO rotations, respectively. Furthermore, the RE rotation improved soil fertility compared with the other two rotations. Although the RE rotation required the highest agricultural input among the three rotations, it contributed to the highest net ecosystem economic profits owing to its highest agricultural income and lowest environmental damage cost. Thus, RE rotation is an effective rice-based rotation that can use rice straws to reduce the net global warming potential and increase economic benefits and soil fertility. Therefore, RE rotation may serve as an alternative strategy for achieving sustainable agricultural production in winter fallow areas of the rice-upland region in Yangtze River Basin, China.
World soils and terrestrial ecosystems have been a source of atmospheric abundance of CO2 ever since settled agriculture began about 10-13 millennia ago. The amount of CO2-C emitted into the atmosphere is estimated at 136 +/- 55 Pg from terrestrial ecosystems, of which emission from world soils is estimated at 78 +/- 12 Pg. Conversion of natural to agricultural ecosystems decreases soil organic carbon (SOC) pool by 30-50% over 50-100 years in temperate regions, and 50-75% over 20-50 years in tropical climates. The projected global warming, with estimated increase in mean annual temperature of 4-6 degrees C by 2100, may have a profound impact on the total soil C pool and its dynamics. The SOC pool may increase due to increase in biomass production and accretion into the soil due to the so-called CO2 fertilization effect, which may also enhance production of the root biomass. Increase in weathering of silicates due to increase in temperature, and that of the formation of secondary carbonates due to increase in partial pressure of CO2 in soil air may also increase the total C pool. In contrast, however, SOC pool may decrease because of: (i) increase in rate of respiration and mineralization, (ii) increase in losses by soil erosion, and (iii) decrease in protective effects of stable aggregates which encapsulate organic matter. Furthermore, the relative increase in temperature projected to be more in arctic and boreal regions, will render Cryosols under permafrost from a net sink to a net source of CO2 if and when permafrost thaws. Thus, SOC pool of world soils may decrease with increase in mean global temperature. In contrast, the biotic pool may increase primarily because of the CO2 fertilization effect. The magnitude of CO2 fertilization effect may be constrained by lack of essential nutrients (e.g., N, P) and water. The potential of SOC sequestration in agricultural soils of Europe is 70-190 Tg C yr(-1). This potential is realizable through adoption of recommended land use and management, and restoration of degraded soils and ecosystems including wetlands.