共检索到 3

During the development of green agriculture and pesticide use, reducing pesticides use and improving control efficiency is imperative. To date, new pesticide formulations created by nanotechnology can be expected to overcome the difficulties that cannot be solved by the traditional pesticide processes and make pesticide formulations close to the needs of green agricultural production. As natural polysaccharides, Xanthan gum (XG) charactered by a repeated units and side chain of D-glucose, d-mannose, and d-glucuronic acid, and thereby having the unprecedented features in response to wide practice in various fields. This review introduces the properties of the natural polymer XG and its current status of application in agriculture, focusing on the pesticide adjuvant and preparation of novel pesticide and fertilizer delivery systems (such as core-shell and hydrogel), and combined with the applications in mulch film and soil engineering. Furthermore, the properties of Xanthooligosaccharides suitable for agriculture were discussed. Finally, the potential of XG for the creation of nanopesticides and its future prospects are highlighted. Taken together, XG's excellent performance endows it with a wide range of applications in the agriculture field, and result in strong stimulating the sustainable development of agriculture and evolution of agricultural industry.

期刊论文 2024-11-01 DOI: 10.1016/j.ijbiomac.2024.136562 ISSN: 0141-8130

Bioherbicides might be used to manage weeds as opposed to synthetic chemical herbicides, reducing environmental risks and advancing sustainable agriculture in the meantime. Bioherbicides employ different mechanisms of action to control weeds. Microbial bioherbicides may infect and damage weed plants, disrupt their growth, or produce compounds inhibiting weed development. Plant-derived bioherbicides often target specific biochemical processes crucial for weed survival. It can be applied through conventional spraying equipment, seed treatments, or soil incorporation. Bioherbicide development faces several challenges. One major hurdle is the complex diversity of weed species across different regions, requiring tailored bioherbicide solutions. The regulatory approvals for bioherbicides can be lengthy and costly, hindering widespread adoption. Scaling up production processes and ensuring product stability also pose challenges. By reducing reliance on chemical herbicides, bioherbicides can mitigate environmental pollution, protect non-target organisms, and promote sustainable agricultural practices. The development of locally adapted bioherbicides and strategic collaborations between researchers, industries, and policymakers could further enhance their prospects in a particular country. In addition, the knowledge gaps need to be addressed prior to adopting bioherbicides in agriculture. These review intended to explore the existing state of knowledge about the categories of bioherbicides, their formulation procedure, application approaches and mode of action to control weed. The bioherbicides that are currently on the market, their effects on weed physiology, and possible factors affecting their efficacy are all included in this review. Moreover, this review offers a perspective on existing challenges and future opportunities for adopting the bioherbicides in sustainable and eco-friendly agriculture.

期刊论文 2024-08-30 DOI: 10.1016/j.heliyon.2024.e36088

High -value utilization of bleached lignin has been widely used in different fields, whereas the investigation on darkened lignin in composite materials was often ignored. In this work, a sort of eco-friendly and structurally robust sodium carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA)/sodium lignosulfonate (SLS) black composite mulch film was elaborately designed. The chelation and redox reaction effect between Fe ions and SLS lead to the formation of a more quinones structure on lignin, darkening both lignin and the mulch films. The chelation effect between Fe ions and biopolymer formed three-dimensional structures, which can be used as sacrifice bonds to dissipate energy and improve the mechanical properties of the composite films. In particular, the maximum elongation at break and toughness increased from 48.4 % and 1141 kJ/m 3 for the CMC/PVA film to 210.9 % and 1426 kJ/m 3 for the optimized CMC/PVA/SLS/Fe black mulch film, respectively. In addition, the optimized black mulch film also possesses good soil water retention, thermal preservation effect, controlled urea release, and well biodegradability. This work offered a novel strategy for designing eco-friendly black mulch with reinforced mechanical strength, slow -release urea, soil moisture retention, and heat preservation performances.

期刊论文 2024-04-01 DOI: 10.1016/j.ijbiomac.2024.130981 ISSN: 0141-8130
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页