共检索到 26

In practical engineering, earthquake-induced liquefaction can occur more than once in sandy soils. The existence of low-permeable soil layers, such as clay and silty layers in situ, may hinder the dissipation of excess pore pressure within sand (or reconsolidation) after the occurrence of liquefaction due to the mainshock and therefore weaken the reliquefaction resistance of sand under an aftershock. To gain more mesomechanical insights into the reduced reliquefaction resistance of the reconsolidated sand under aftershock, a series of discrete element simulations of undrained cyclic simple shear tests were carried out on granular specimens with different degrees of reconsolidation. During both the first (mainshock) and second (aftershock) cyclic shearing processes, the evolution of the load-bearing structure of the granular specimens was quantified through a contact-normal-based fabric tensor. The interplay between mesoscopic structure evolutions and external loadings can well explain the decrease in reliquefaction resistance during an aftershock.

期刊论文 2025-08-01 DOI: 10.1016/j.soildyn.2025.109415 ISSN: 0267-7261

A tensor-type capillary stress, instead of a scalar suction, has been proposed to serve as a stress-like state variable to capture the effects of capillarity in the mechanics of unsaturated granular soils. However, the influence of water content on the evolution of capillary stress in such soils remains insufficiently understood. This study performs numerical simulations of unsaturated granular soils in the pendular regime using the Discrete Element Method (DEM) involving a volume-controlled capillary bridge model. In these simulations, water content is maintained constant by redistributing the water from ruptured capillary bridges to adjacent ones. The evolution of capillary stress with varying water contents during triaxial and biaxial loading conditions is systematically examined. The DEM simulation results show that, under both loading conditions, the mean component of the capillary stress generally decreases, while its deviatoricity gradually develops. These changes are observed to become less significant as the initial degree of saturation increases. At low saturation levels, capillary bridges between non-contacting particle pairs rupture due to soil deformations, and the water from these ruptured bridges redistributes to existing contacts. This redistribution leads to an anisotropic distribution of pore water aligned with the contact network. At higher saturation levels, non-contacting capillary bridges persist due to their ability to sustain large relative displacements between particles, allowing the spatial distribution of pore fluids to remain less constrained by the solid contact network. Additionally, at higher water contents, relative sliding and particle rearrangement are the primary factors influencing the directional distribution of capillary bridges.

期刊论文 2025-08-01 DOI: 10.1016/j.powtec.2025.121095 ISSN: 0032-5910

The breakage phenomenon has gained attention from geotechnical and mining engineers primarily due to its pivotal influence on the mechanical response of granular soils. Numerous researchers performed laboratory tests on crushable soils and incorporated the corresponding effects into numerical simulations. A systematic review of various studies is crucial for gaining insight into the current state of knowledge and for illuminating the required developments for upcoming research projects. The current state-of-the-art study summarizes both experimental evidence and numerical approaches, particularly focusing on discrete element simulations and constitutive models used to describe the behavior of crushable soils. The review begins by exploring particle breakage quantification, delving into experimental evidence to elucidate its influence on the mechanical behavior of granular soils, and examining the factors that affect the breakage phenomenon. In this context, the accuracy of various indices in estimating the extent of breakage has been assessed through ten series of experiments conducted on different crushable soils. Furthermore, alternative breakage indices are suggested for constitutive models to track the evolution of particle crushing under continuous shearing. Regarding numerical modeling, the review covers different approaches using the discrete element method (DEM) for simulating the behavior of crushable particulate media, discussing the advantages and disadvantages of each approach. Additionally, different families of constitutive models, including elastoplasticity, hypoplasticity, and thermodynamically based approaches, are analyzed. The performance of one model from each group is evaluated in simulating the response of Tacheng rockfill material under drained triaxial tests. Finally, new insights into the development of constitutive models and areas requiring further investigation utilizing DEM have been highlighted.

期刊论文 2025-07-01 DOI: 10.1007/s00419-025-02845-0 ISSN: 0939-1533

Accurately describing the solid-like and fluid-like behaviors of granular media is crucial in geotechnical engineering. While the unified frictional-collisional model, integrating rate-independent frictional and ratedependent collisional stresses, is widely used for solid-fluid phase transitions, an effective model is still under investigation, and comprehensive analyses are lacking. This study addresses these gaps by developing an enhanced elastoplasticity-based frictional-collisional model. The frictional stress is modeled using a critical-statebased elastoplasticity approach, and the collisional stress is formulated through an enhanced kinetic theory incorporating particle stiffness. Subsequently, comprehensive element simulations are conducted to explore the effects of concentration, particle stiffness, and strain rate paths on the model. The proposed model's effectiveness is also validated against experimental data. Finally, a detailed comparison with the typical mu(I) rheology model and a state-equation-based phase transition model is conducted. Our analyses show that the developed model effectively captures strain rate path and particle stiffness through the collisional stress component, while concentration-dependent characteristics are captured through both frictional and collisional stress components. Through comparative analyses, we also found that both the state-equation-based and elastoplasticity-based models depict solid-like behavior and replicate the rheology of granular media in a fluid-like state, similar to the mu(I) model. However, they differ in implementing critical state theory: the state-equation-based model acts as a partial-range phase transition model, describing stress evolution from the critical state to the fluid-like state, while the proposed elastoplasticity-based model serves as a full-range phase transition model, covering stress evolution from the initial to the fluid-like state.

期刊论文 2025-07-01 DOI: 10.1016/j.compgeo.2025.107218 ISSN: 0266-352X

Accurate continuum modelling of granular flows is essential for predicting geohazards such as flow-like landslides and debris flows. Achieving such precision necessitates both a robust constitutive model for granular media and a numerical solver capable of handling large deformations. In this work, a novel unified phase transition constitutive model for granular media is proposed that follows a generalized Maxwell framework. The stress is divided into an elastoplastic part and a viscous part. The former utilizes a critical-state-based elastoplasticity model, while the latter employs a strain acceleration-based mu(I) rheology model. Key characteristics such as nonlinear elasticity, nonlinear plastic hardening, stress dilatancy, and critical state concept are incorporated into the elastoplasticity model, and the non-Newtonian mu(I) rheology model considers strain rate and strain acceleration (i.e., a higher-order derivative of strain) to capture changes in accelerated and decelerated flow conditions. A series of element tests is simulated using the proposed unified phase transition model, demonstrating that the novel theory effectively describes the transition of granular media from solid-like to fluid-like states in a unified manner. The proposed unified model is then implemented within the material point method (MPM) framework to simulate 2D and 3D granular flows. The results show remarkable consistency with results from experiments and other numerical methods, demonstrating the model's accuracy in capturing solid-like behaviour during inception and deposition, as well as liquid-like behaviour during propagation.

期刊论文 2025-06-05 DOI: 10.1016/j.enggeo.2025.108054 ISSN: 0013-7952

This study investigates the simultaneous influence of particle shape and initial suction on the hydromechanical behavior of unsaturated sandy soils. Anisotropic loading-unloading tests at constant water content conditions were conducted on three sands with distinct shapes (Firoozkooh-most angular, Babolsar-Subangular, and Mesr-roundest) using a direct shear apparatus. Particle shapes were quantified in terms of sphericity, roundness, and regularity using the results of scanning electron microscopy (SEM) tests. In addition, a coupled hydromechanical model based on elasto-viscoplasticity was developed and validated against the experimental results first. The model was then employed to conduct a parametric study (compressibility, pore water pressure, and permeability) with an emphasis on the role of particle morphology and shape. The findings revealed rounder particles (higher regularity) experienced higher volumetric strain (epsilon v) under lower suction but less epsilon vwith increasing suction compared to angular sands. Moreover, the rate of permeability reduction during loading in Mesr sand was 1.5 times and 2.4 times higher than that of Babolsar and Firoozkooh sands at near-saturation condition. However, this amount decreased with increasing suction. Pore water pressure (PWP) generation was highest in the most angular sand due to its retention characteristics. The relationship between void ratio and PWP was independent of loading cycles and exhibited a linear dependence. Particle shape significantly impacted this relationship, with rounder sands showing a higher rate of void ratio change per unit change in PWP.

期刊论文 2025-05-01 DOI: 10.1016/j.trgeo.2025.101560 ISSN: 2214-3912

The weakening of shear strength in granular soils under various vibrations is a common phenomenon, though its underlying mechanisms remain unclear. In this study, the macroscopic and microscopic shear behaviors of granular soils under vibration are investigated using the discrete element method (DEM). Specifically, the effects of vibrational acceleration a, vibrational frequency f and confining pressure sigma(n) on the dynamic mechanical properties of granular soils are examined. Dense and loose specimens composed of spherical particles are subjected to triaxial compression tests until the critical state is reached. At the macroscopic level, the results show that the degree of shear strength weakening and reduction in void fraction exhibit an approximately linear relationship under different vibration conditions. On the microscopic scale, anisotropic analysis sheds light on the mechanisms behind shear strength weakening from two perspectives. First, the weakening is primarily driven by reductions in the contact normal anisotropy a(n), normal contact force anisotropy a(c), and tangential contact force anisotropy a(t), with their contribution follows a(n) > a(c) approximate to a(t). Second, a linear relationship is observed between the stress ratio q/p' and contact normal anisotropy within the strong and non-sliding contacts a(c)(sn) during vibration phase (i.e., q/p' = 0.62a(c)(sn) ). Thus, the decrease of shear strength due to vibration is fundamentally linked to the reduction of a(c)(sn) .

期刊论文 2025-04-30 DOI: 10.1016/j.powtec.2025.120819 ISSN: 0032-5910

The physical and mechanical properties of granular soils are strongly related to the overlying stresses to which they are subjected. In particular, during the engineering construction phase, which involves activities like foundation stacking and building construction, the applied loads on the soil increase continuously over time. Unfortunately, current stress-controlled compression geotechnical tests have not adequately considered this situation. Therefore, this study aims to examine the effects of various factors, including void ratio, confining stress, stress loading rate, and particle shape, on both macroscopic shear properties and microscopic characteristics of granular soils under conditions of increasing axial stress in biaxial compression numerical simulations. The results show that: (1) In stress-controlled tests on granular soils, samples exhibit three different shear behaviors as the void ratio varies; (2) the confining stress and particle shape will change the magnitude of the deviatoric stresses and axial strains in the peak state of the sample, but not their trends; (3) the stress loading rate does not affect the strength of the samples. Therefore, the loading rate can be increased appropriately to improve the computational efficiency of the numerical model. These findings will enhance understanding of the time-dependent behavior of granular soils and provide valuable insights for engineering applications, particularly in soil mechanics, foundation treatment, and slope stability.

期刊论文 2025-02-04 DOI: 10.1007/s40571-025-00910-7 ISSN: 2196-4378

The progressive accumulation of secondary deformation, occurring incrementally under lowamplitude, high-cycle loading in soils, can lead to significant displacement of foundations. This study has developed a novel phenomenological model to describe the shakedown accumulation behavior of secondary deformation in granular soils subjected to low-amplitude, high-cycle loading. Firstly, gradual densification of granular packing yields an average volume strain that obeys a logarithmic law as the cyclic loading persists. A log-hyperbolic function, constrained by a limit, is reasonable, considering that the strain will reach a steady state of finite value as the cycle number approaches infinity. Secondly, cyclic loadings with average stress induce the accumulation of strain in the direction of average stress as the cycle number increases. This has been incorporated into the well-known modified Cam-clay model. Lastly, the proposed model has been calibrated using data obtained from undrained and drained cyclic triaxial tests conducted on uniformly fine-grained sands. The results suggest that the model effectively exhibits important features of the accumulation of both volumetric and deviatoric deformation induced by drained cyclic loading over a large number of cycles.

期刊论文 2025-01-01 DOI: 10.15244/pjoes/188639 ISSN: 1230-1485

This paper investigates the effects of particle morphology (PM) and particle size distribution (PSD) on the micro-macro mechanical behaviours of granular soils through a novel X-ray micro-computed tomography (mu CT)-based discrete element method (DEM) technique. This technique contains the grain-scale property extraction by the X-ray mu CT, DEM parameter calibration by the one-to-one mapping technique, and the massive derivative DEM simulations. In total, 25 DEM samples were generated with a consideration of six PSDs and four PMs. The effects of PSD and PM on the micro-macro mechanical behaviours were carefully investigated, and the coupled effects were highlighted. It is found that (a) PM plays a significant role in the micro-macro mechanical responses of granular soils under triaxial shear; (b) the PSD uniformity can enhance the particle morphology effect in dictating the peak deviatoric stress, maximum volumetric strain, contact-based coordination number, fabric evolution, and shear band formation, while showing limited influences in the maximum dilation angle and particle-based coordination number; (c) with the same PSD uniformity and PM degree, the mean particle volume shows minimal effects on the macro-micro mechanical behaviours of granular soils as well as the particle morphology effects.

期刊论文 2025-01-01 DOI: 10.3390/ma18020428
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共26条,3页