共检索到 21

The soil packing, influenced by variations in grain size and the gradation pattern within the soil matrix, plays a crucial role in constituting the mechanical properties of sandy soils. However, previous modeling approaches have overlooked incorporating the full range of representative parameters to accurately predict the soaked California bearing ratio (CBRs) of sandy soils by precisely articulating soil packing in the modeling framework. This study presents an innovative artificial intelligence (AI)-based approach for modeling the CBRs of sandy soils, considering grain size variability meticulously. By synthesizing extensive data from multiple sources, i.e. extensive tailored testing program undertaking multiple tests and extant literature, various modeling techniques including genetic expression programming (GEP), multi-expression programming (MEP), support vector machine (SVM), and multi-linear regression (MLR) are utilized to develop models. The research explores two modeling strategies, namely simplified and composite, with the former incorporating only sieve analysis test parameters, while the latter includes compaction test parameters alongside sieve analysis data. The models' performance is assessed using statistical key performance indicators (KPIs). Results indicate that genetic AI-based algorithms, particularly GEP, outperform SVM and conventional regression techniques, effectively capturing complex relationships between input parameters and CBRs. Additionally, the study reveals insights into model performance concerning the number of input parameters, with GEP consistently outperforming other models. External validation and Taylor diagram analysis demonstrate the GEP models' superiority over existing literature models on an independent dataset from the literature. Parametric and sensitivity analyses highlight the intricate relationships between grain sizes and CBRs, further emphasizing GEP's efficacy in modeling such complexities. This study contributes to enhancing CBRs modeling accuracy for sandy soils, crucial for pertinent infrastructure design and construction rapidly and cost-effectively. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-05-01 DOI: 10.1016/j.jrmge.2024.05.048 ISSN: 1674-7755

In this paper, an extensive series of direct shear box tests (99 tests) were conducted to explore and compare the effects of raw and treated natural fibers, specifically Doum fibers on the mechanical behavior of three categories of sandy soils with distinct mean particle sizes (D50 = 0.63, 1, and 2 mm). Specimens from every soil category, containing 0 to 0.8% raw Doum fibers and 0 to 1% treated Doum fibers in incremental step of 0.2%, were reconstituted at an initial relative density of (Dr = 87 +/- 3%) and subjected to three different initial normal stresses (100, 200, and 400 kPa). The obtained results indicate that incorporating raw or treated Doum fibers improve the mechanical and rheological properties (internal friction angle, ductility, and maximum dilatancy angle) of the tested mixtures up to specific thresholds Doum fiber content (FD = 0.6% and FTD = 0.8% for raw and treated Doum fibers respectively). Beyond these limiting values, the mechanical and rheological properties decreased with further increases in Doum fiber content. Additionally, specimens reinforced with treated Doum fibers exhibit higher shear strength than that of the raw Doum fibers for all tested parameters. Based on the experimental results, it has been found to suggest a reliable correlation between Particle Size Distribution (PSD) characteristics and mechanical properties for all reconstituted specimens. The recorded soil trend is especially pronounced for the mean grain size (D50) ranging between 1 and 2 mm, where a notable increase in shear resistance is noticed. The analysis of the obtained outcome suggests the introduction of new enhancement factors (EF tau peak and EF phi degrees) as useful parameters for predicting the mechanical behavior of sand-fibers mixtures. Furthermore, new relationships have been developed to forecast changes in mechanical properties (peak shear strength, internal friction angle, and maximum dilatancy angle) of the tested mixtures under the impact of the selected parameters (FD/TD, D50, and sigma n).

期刊论文 2025-04-01 DOI: 10.1007/s40999-024-01062-0 ISSN: 1735-0522

The relevance between microstructure and anti-corrosion performance of FeCoNi HEA prepared with different cooling methods was studied in simulated Golmud salinized soil solution. The results reveal that the corrosion rate reduces with increasing cooling rate, and the water-cooling HEA has the best anti-corrosion performance, followed by the air-cooling and furnace-cooled samples, which mainly depends on the grain size and the protectiveness of passivation film. An increase in grain size weakens the micro-galvanic corrosion effect between the grain boundary and the internal grain. Moreover, compact and uniform passive film markedly improves the anti-corrosion performance of water-cooled HEA. Combined with electrochemical tests, the water-cooling HEA exhibits the lowest sensitivity of metastable and stable pitting, as well as its surface passive film possesses excellent self-repairing ability. In addition, the HEA substrate occurs the preferential dissolution of Ni element.

期刊论文 2025-04-01 DOI: 10.1007/s11665-024-09626-w ISSN: 1059-9495

Desiccation crack patterns are commonly observed in natural and engineered soils and provides preferential pathways for moisture infiltrating into the soil. Cracks occur easily in soil when moisture is lost due to desiccation. Crack formation and development are closely related to moisture content and have a marked impact on the soil deformation characteristics and hydraulic properties. However, the critical moisture content below which desiccation cracks appear in the soil is usually determined by experiment because there is a lack of research on theoretical calculation models. Therefore, a theoretical calculation model is proposed to calculate the critical moisture content, and a parameter, lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}, based on the following relationships: between soil grain size and suction, between suction and tensile strength, and between soil cracking and tensile strength. The critical moisture content values of different grain compositions were calculated and compared with laboratory experiments of desiccation crack. The critical moisture content of the granite residual soil is between 20% (50% liquid limit) and 30% (75% liquid limit). The presented model provides a means to estimate the critical moisture content of crack formation from soil desiccation using basic soil properties. This method can estimate the characteristics of soil desiccation cracks under extreme weather condition.

期刊论文 2025-03-01 DOI: 10.1007/s10064-025-04175-5 ISSN: 1435-9529

The mineralogy and texture of granite have been found to have a pronounced effect on its mechanical behavior. However, the precise manner in which the texture of granite affects the shear behavior of fractures remains enigmatic. In this study, fine-grained granite (FG) and coarse-grained granite (CG) were used to create tensile fractures with surface roughness (i.e. joint roughness coefficient (JRC)) within the range of 5.48-8.34 and 12.68-16.5, respectively. The pre-fractured specimens were then subjected to direct shear tests under normal stresses of 1-30 MPa. The results reveal that shear strengths are smaller and stick-slip behaviors are more intense for FG fractures than for CG fractures, which is attributed to the different conditions of the shear surface constrained by the grain size. The smaller grain size in FG contributes to the smoother fracture surface and lower shear strength. The negative friction rate parameter a - b for both CG and FG fractures and the larger shear stiffness for FG than for CG fractures can account for the more intense stick-slip behaviors in FG fractures. The relative crack density for the post-shear CG fractures is greater than that of the FG fractures under the same normal stress, both of which decrease with the distance away from the shear surface following the power law. Moreover, the damage of CG fracture extends to a larger extent beneath the surface compared with the FG fracture. Our findings demonstrate that the grain size of the host rock exerts a significant influence on the fracture roughness, and thus should be incorporated into the assessment of fault slip behavior to better understand the role of mineralogy and texture in seismic activities. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-03-01 DOI: 10.1016/j.jrmge.2024.02.033 ISSN: 1674-7755

Soil with high liquid limit is often encountered in southern China, which is unsuitable for direct use as embankment fill. Current soil reinforcement methods entail high carbon emissions, necessitating mitigation for a low-carbon future. In this study, a reconstituted soil is reconstituted to simulate the soil with high liquid limit from the site of the reconstruction and expansion project for the Zhangshu-Ji'an Highway in Jiangxi, China. This reconstituted soil was reinforced using steel slag, varying in grain sizes and employing two mixing methods. The mechanical characteristics of the pure and reinforced soil were examined by a series of monotonic and cyclic triaxial tests. The results indicate that decreasing the grain size of steel slag increases the monotonic shear strength and leads to a decrease in the permanent strain under cyclic loading, regardless of the mixing methods. The reduction in grain size of steel slag increases the total frictional surface area, thereby enhancing soil strength and resistance to deformation. Compared to the samples by uniform mixing with the steel slag, the samples by layered mixing results in a greater shear strength and a more significant permanent strain, because the concentrated steel slag grains and reconstituted soil particles produce greater friction and more significant compressibility, respectively. Overall, smaller grains of the steel slag by uniform mixing are more effective for reinforcing weak soil with high liquid limit, as it provides a higher monotonic strength and a lower permanent deformation, and reduces rapid energy dissipation under cyclic loading, compared to layered mixing.

期刊论文 2025-03-01 DOI: 10.1007/s10064-025-04176-4 ISSN: 1435-9529

Seismically induced soil liquefaction was listed as one of the major causes of damage observed in the natural and built environment during the 2023 Turkiye-Kahramanmaras earthquake sequence. Reconnaissance field investigations were performed to collect perishable data and document the extent of damage immediately after the events. The sites with surface manifestations of seismic soil liquefaction in the form of soil ejecta, excessive foundation and ground deformations were identified and documented. The deformations were mapped, and samples from ejecta were retrieved. The ejecta samples were predominantly classified as sands with varying degrees of fines. Laboratory test results performed on liquefied soil ejecta revealed that the fines-containing liquefied ejecta samples are mostly classified as low plasticity clays (CL). Most of CL soil type ejecta were retrieved from Golbasi-Adiyaman region. The liquid limits of these samples varied in between 32 and 38%, their plasticity index values were estimated in the range of 16-23%. Surprisingly, two ejecta samples with plasticity indices higher than 30% were retrieved from Hatay airport, one of which was classified as high plasticity clay (CH). The majority of the fine-grained ejecta samples fall either on Zone B: Testing Recommended region of the Seed et al. (Keynote presentation, 26th Annual ASCE Los Angeles Geotechnical Spring Seminar, Long Beach, CA, 2003) susceptibility chart. Moreover, 12 out of 74 samples fall outside the susceptible limits defined by Seed et. These preliminary results suggest that clayey soils can produce liquefied ejecta when subjected to cyclic loading. Detailed site investigation and laboratory testing programs are ongoing to further investigate this rather unexpected response. Until their findings become available, the liquefaction susceptibility of silty-clayey soils' mixtures is recommended to be assessed conservatively with caution.

期刊论文 2025-02-01 DOI: 10.1007/s10518-024-01875-3 ISSN: 1570-761X

Lake sediments record the environment during the lake sedimentation whose characteristics can infer environmental changes and human activities. In this study, the Pb-210 chronologies and sedimentation rate of the sediment core in Honghu Lake were calculated by the Constant Rate of Supply model. The characteristics of the sedimentary environment were analysed by using physical and chemical indicators. Four stages were divided as follows: Stage A (before 1900): The relatively low sedimentation rate and nutrient content indicated an extremely stable sedimentary environment. Stage B (1900-1949): With the growth of population, the intensity of land use began to increase, with an averaged sedimentation rate of 0.252 gcm(-2)a(-1). Stage C (1949-1980): The sedimentation rate and nutrient content increased markedly. The intense human activity has damaged the surrounding vegetation leading to soil erosion and accelerated sedimentation rate. With the deterioration of the lake water environment, the organic matter source was mainly the internal source represented by algae and bacteria. Stage D (1980-2011): Influenced by the difference in land use types along the coast, the sedimentation rate of HH-A (0.570 gcm(-2)a(-1)) is higher than that of HH-B (0.445 gcm(-2)a(-1)). The results are of significance to the management of rural lakes and reservoirs.

期刊论文 2024-12-31 DOI: 10.1080/27669645.2024.2373556

Clay pellet mixtures are generally compressed to improve their engineering performance. Deepening the comprehension of the mechanical properties of these mixtures in the complete compression process facilitates the benefit to the engineering design and their utilization. In this study, the effects of soil grain size distribution, water content and dry density on the mechanical properties and microstructure of Teguline clay pellet mixtures during a continuous oedometric compression process are explored. Three types of soil pellet mixtures, including mixture A (grain size <= 5 mm), mixture B (<= 0.4 mm) and mixture C (2-5 mm), were prepared with different water contents of 7%, 8% and 12% respectively. Subsequently, continuous oedometeric compression was undertaken to explore their mechanical behaviours of the soil pellet mixtures. After that, the microstropic structures of the compacted pellet mixtures were investigated using mercury intrusion porosimetry (MIP). The results indicated that mixture A has a minimal initial packing density of pellet mixtures, while mixture C has a maximum one at the initial compression stage. After completion of compression, the compression curves of the pellet mixtures tended to converge uniformity at a semilogarithm coordinate as the vertical stress increased. All of the compression curves presented a concave shape at the plastic compression stage, which is significantly influenced by grain size distribution and water content. In contrast, the elastic compression and rebound behaviours are little affected by the grain size distribution and water content. As far as the microstructure is concerned, compacted samples prepared by mixture A or C presented a unimodal pore structure, while those by mixture B showcased a bimodal pore structure. In comparison with the unimodal pore distribution of the undisturbed stiff clay, the compacted samples displayed a pseudo-unimodal pore distribution because the inter-aggregate pores still existed. A double tangent method was proposed to determine the delimiting pore diameter of the pseudounimodal pore distribution curves and found that the delimiting pore diameter decreased with the increase of dry density and water content. Moreover, the inflexion point for the pore diameter of compacted samples prepared by coarse soil was larger than that of fine soil. Combining this work with previous research, it was found that the high compression of coarse soil easily causes the pseudo-unimodal shape, which is also impacted by water content and particle properties. This work could help deepen the understanding of the mechanical characteristics and microstructure of the stiff clay pellet mixtures during continuous oedometric compression.

期刊论文 2024-11-01 DOI: 10.1016/j.clay.2024.107535 ISSN: 0169-1317

The increase in pore water pressure, directly associated with the compressibility of loose sands under seismic loading, induces liquefaction, resulting in a decrease in effective stresses and, consequently, a loss of soil strength and stiffness in saturated sandy soils. For a long time, geotechnical engineers have found it difficult to understand the phenomenon of soil liquefaction. It is crucial to look into the factors influencing the liquefaction and/or softening of soil as well as the production and evolution of pore water pressure to have a deeper knowledge of the liquefaction phenomena. The size of the particles is one of the important factors. The purpose of this work is to examine how sand particle size, repetitive loading, and undrained circumstances affect the development of excessive pore water pressure. SEM and EDX imaging were conducted to determine the characteristics of three different sands. To ascertain the parameters of shear resistance, three sands with varying gradations were chosen and subjected to direct shear tests. For each of the three sands with varying particle sizes, cylindrical triaxial test specimens were made, and a set of dynamic triaxial tests under stress control were performed. The specimens were tested at various repeated stress ratios (CSR) using loading frequency of 0.1 Hz after being isotropically consolidated under an effective stress of 100 kPa. Experiments on three different sands with varying grain sizes and shapes revealed increased liquefaction potential with a reduction in grain diameter. It was observed that as the cyclic shear strain increased, the sand samples reached liquefaction at lower cycles. Additionally, it was noted that incorporating empirical coefficients that consider grain size and shape into the prediction of pore water pressure improved compatibility with models commonly used in the literature, leading to better results.

期刊论文 2024-09-09 DOI: 10.1007/s12046-024-02592-y ISSN: 0256-2499
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共21条,3页