The Arctic-boreal zone (ABZ) is warming due to climate change. Current spaceborne remote sensing techniques and retrieval methodologies need to be complemented to improve systematic monitoring of the cryosphere. To that end, this article presents a new investigation of the use of the global navigation satellite system reflectometry (GNSS-R) remote sensing technique by a SmallSat constellation. A new freeze/thaw (F/T) seasonal multithresholding algorithm (STA) is developed using high-inclination orbit near-Nadir Spire Global GNSS-R data acquired through the National Aeronautics and Space Administration (NASA) Commercial Smallsat Data Acquisition (CSDA) Program. Five different soil surface reflectivity Gamma models are proposed to account for the impact of vegetation cover and small-scale surface roughness on Earth-reflected GNSS signals. The sensitivity of the Gamma models to F/T surface state transitions is evaluated, and the optimum model is selected to construct a seasonal scale factor. Then, a multithresholding matrix is obtained for F/T classification using a specific threshold for every surface grid cell. Results for the annual frozen soil duration (days yr(-1)) are compared with those by the Soil Moisture Active Passive (SMAP) mission. Additionally, freezing and thawing periods are analyzed to determine when the moisture exchange with the atmosphere is locked, which is an important climatic factor. A novel metric is introduced to characterize the freeze intensity moving beyond classical F/T binary classifications. Results are evaluated using air and soil temperature, snow depth and temperature, and soil moisture content (SMC) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5-Land reanalysis product.
The freeze-thaw (F/T) process plays a significant role in climate change and ecological systems. The soil F/T state can now be determined using microwave remote sensing. However, its monitoring capacity is constrained by its low spatial resolution or long revisit intervals. In this study, spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data with high temporal and spatial resolutions were used to detect daily soil F/T cycles, including completely frozen (CF), completely thawed (CT), and F/T transition states. First, the calibrated Cyclone Global Navigation Satellite System (CYGNSS) reflectivity was used for soil F/T classification. Compared with those of soil moisture active and passive (SMAP) F/T data and in situ data, the detection accuracies of CYGNSS reach 75.1% and 81.4%, respectively. Subsequently, the changes in spatial characteristics were quantified, including the monthly occurrence days of the soil F/T state. It is found that the CF and CT states have opposite spatial distributions, and the F/T transition states distribute from the east to the west and then back to the east of the Qinghai-Tibet Plateau, which may be due to varying diurnal temperatures in different seasons. Finally, the first day of thawing (FDT), last day of thawing, and thawing period of the F/T year were analyzed in terms of the changes in temporal characteristics. The temporal variation of thawing is mainly different between the western and eastern parts of the Tibetan Plateau, which is in agreement with the spatial variation characteristics. The results demonstrate that the CYGNSS can accurately detect the F/T state of near-surface soil on a daily scale. Moreover, it can complement traditional remote sensing missions to improve the F/T detection capability. It can also expand the applications of GNSS-R technology and provide new avenues for cryosphere research.
Most previous studies of the Qinghai-Tibet engineering corridor (QTEC) have focused on the impacts of climate change on thaw-induced slope failures, whereas few have considered freeze-induced slope failures. Terrestrial laser scanning was used in combination with global navigation satellite systems to monitor three-dimensional surface changes between 2014 and 2015 on the slope of permafrost in the QTEC, which experienced two thawing periods and a freezing period. Soil temperature and moisture sensors were also deployed at 11 depths to reveal the hydrological-thermal dynamics of the active layer. We analyzed scanned surface changes in the slope based on comparisons of multi-temporal point cloud data to determine how the hydrological-thermal process affected active layer deformation during freeze-thaw cycles, thereby comprehensively quantifying the surface deformation. During the two thawing periods, the major structure of the slope exhibited subsidence trends, whereas the major structure of the slope had an uplift trend in the freezing period. The seasonal subsidence trend was caused by thaw settlement and the seasonal uplift trend was probably due to frost heaving. This occurred mainly because the active layer and the upper permafrost underwent a phase transition due to heat transfer. The ground movements occurred approximately in the soil temperature conduction direction between the top of the soil and the permafrost table. The elevation deformation range was mainly -0.20 m to 0.20 m. Surface volume increases with heaving after freezing could have compensated for the loss of thawing twice and still led to the upward swelling of the slope. Thus, this type of slope in permafrost is dominated by frost heave. Deformation characteristics of the slope will support enhanced decision making regarding the implementation of remote sensing and hydrological-thermal measurement technologies to monitor changes in the slopes in permafrost adjacent to engineering corridors, thereby improving the understanding and assessment of hazards.