Large quantities of chlordecone-based insecticides were produced and used throughout the world. One of its most important uses was to control the damage caused by Cosmopolites sordidus in banana-growing regions. In the islands of Martinique and Guadeloupe, 18,000 ha of farmland are potentially contaminated. Despite the key role played by soil macrofauna in agroecosystems, there are currently no data on their contamination. The aim of this study was to explore the fate of chlordecone (CLD) and its transfer to different organisms of the soil food web. Seven species of invertebrates representing different taxonomic groups and trophic levels of the soil communities of Martinique were targeted and collected in six experimental banana fields, with a level of contamination within a range of values classically observed. Soil samples and macrofauna from the study sites were analysed for CLD and chlordecol (CLDOH) its main transformation product. The contamination of the soil fauna were related to delta 15N 15 N (trophic level), proportion of soil ingestion (diet) and types of epidermis (mucus or exoskeleton) in order to study the different mechanisms of macrofauna contamination. Presence of CLD and CLDOH could be quantified in all the soil organisms from contaminated fields. Results showed a significant relationship between the CLD contamination of detritivorous and the ash content of their faeces, suggesting that soil ingestion was the main contamination pathway. In contrast, the exoskeleton-bearing diplopod Trigoniulus coralinus and the soft-bodied earthworm Eudrilus eugeniae, both detritivores with a comparable diet, had similar contamination levels, suggesting that the type of tegument has little influence on bioaccumulation. At the scale of the entire trophic network, a significant relationship was uncovered between delta 15N 15 N values and CLD contamination of the fauna, therefore providing some in situ evidence for a bioamplification process along the soil food chain.
Mesoamerican nephropathy (MeN) is a non-traditional chronic kidney disease in some areas of Mesoamerica. The health risk from nephrotoxic metals, such as arsenic (As), lead (Pb), mercury (Hg), vanadium (V), cadmium (Cd), rubidium (Rb), chromium (Cr), and nickel (Ni), was assessed in drinking water and soils. These metals, even at low concentrations, have the capacity to induce epigenetic damage and a nephrotoxic effect. The quantification of metals in soils was made through X-ray fluorescence spectrometry (XRF) and inductively coupled plasma optical emission spectrophotometry (ICP-OES), while the quantification of metals in water was carried out through inductively coupled plasma mass spectrometry (ICPMS) and atomic absorption (AA) spectrometry. The levels of As, Hg, Cd, and V in water were within the permissible limits, whereas Pb was found to be double and triple the value recommended by the World Health Organization. The non-carcinogenic risk from As in soil was evaluated using the Hazard Index (HI), and the route of ingestion was found to be the most important route. The results indicate that consuming water or ingesting soil particles with Pb and As poses a health risk to humans. Therefore, these findings identify the presence of toxicants in an exposure scenario and justify further research into these metals in people and the analysis of exposure routes.