在列表中检索

共检索到 2

Soil moisture (SM), as a crucial variable in the soil-vegetation-atmosphere continuum, plays an important role in the terrestrial water cycle. Analyzing SM's variation and driver factors is crucial to maintaining ecosystem diversity on the Tibetan Plateau (TP) and ensuring food security as well as water supply balance in developing countries. Gradual wetting of the soil has been detected and attributed to precipitation in this area. However, there is still a gap in understanding the potential mechanisms. It is unclear whether the greening, glacier melting, and different vegetation degradation caused by asymmetrical climate change and intensified human activities have significantly affected the balance of SM. Here, to test the hypothesis that heterogeneous SM caused by precipitation was subject to temperatures and anthropogenic constraints, GLDAS-2.1 (Global Land Data Assimilation System-2.1) SM products combined with the statistical downscaling and Geographic detectors were applied. The results revealed that: (1) Seasonal SM gradually increased (p < 0.05), while SM deficit frequently appeared with exposure to extreme climates, such as in the summer of 2010 and 2013, and changed into a pattern of precipitation transport to western dry lands in autumn. (2) There was a synergistic reaction between greening and local moisture in autumn. SM was dominated by low temperature (TMN) in winter, warming indirectly regulated SM by exacerbating the thawing of glaciers and permafrost. The spatial coupling between the faster rising rate of TMN and the frozen soil might further aggravate the imbalance of SM. (3) The land cover's mutual transformation principally affected SM in spring and autumn, and degradation accelerated the loss of SM replenished by precipitation. (4) Land cover responses were different; SM in grassland was less affected by external disturbance, while degraded woodland and shrub performed adaptive feedback under dry environments, SM increased by 0.05 and 0.04 m(3)/(m(3) 10a), respectively. Our research provides a scientific basis for improving hydrological models and developing vegetation restoration strategies for long-term adaptation to TP-changing environments.

期刊论文 2022-10-01 DOI: 10.3390/rs14194862

Methane (CH4) is the second most significant driver of global warming, following carbon dioxide. However, the spatial-temporal variation of CH4 and its driving factors largely remain unclear. Here we selected the Northern Hemisphere as the study area. We used the data from the Total Column Carbon Observing Network (TCCON) to assess the accuracy of the Greenhouse Gases Observing Satellite (GOSAT) Proxy XCH4 (column-averaged dry air mixing ratio of CH4) data. We then analyzed the spatial-temporal distribution of XCH4 in the Northern Hemi-sphere, and further quantified the influencing factors using geographic detectors. The results showed that during 2009-2021, the annual mean XCH4 increased from 2009 (1775.19 ppb) to 2021 (1872.71 ppb), with an increasing rate of 7.50 ppb/year. The monthly average value was the lowest in May (1805.65 ppb) and the highest in September (1825.63 ppb). The XCH4 in the low-latitude region was higher than that in the high-latitudinal region. The geographic detector showed that anthropogenic activities were the main factors affecting the XCH4. Our results revealed the spatial-temporal patterns XCH4 and their driving factors in the Northern Hemisphere, and thus provided a scientific basis for the management of this greenhouse gas in the future.

期刊论文 2021-01-15 DOI: http://dx.doi.org/10.1016/j.atmosres.2023.106811 ISSN: 0169-8095
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页