在列表中检索

共检索到 1

Fusarium is genetically diverse and widely distributed geographically. It is one of the genera with more endophytes (which cause no damage to the host plants). This review highlights the capability of Fusarium species to degrade environmental pollutants and describes the biodegradation pathways of some of the emerging environmental contaminants. Some Fusarium species use metabolic strategies enabling them to efficiently mineralize high concentrations of toxic environmental pollutants. These fungi can degrade hydrocarbons, pesticides, herbicides, dyes, pharmaceutical compounds, explosives, plastics, and plastic additives, among other pollutants, and possess high metal biosorption capabilities. According to data from consulted reports, Fusarium strains showed a percentage of biodegradation of a variety of contaminants ranging between 30 % and 100 % for different tested concentrations (from 1 mg to 10 g/L) in a time range between 10 hand 90 d. Enzymes such as esterase, cutinase, laccase, lignin peroxidase, manganese peroxidase, dehydrogenase, lipase, dioxygenase, and phosphoesterase were detected during the pollutant biodegradation process. Fusarium oxysporum, Fusarium solani, and Fusarium culmorum are the most studied species of this genus. Owing to their metabolic versatility, these fungal species and their enzymes represent promising tools for bioremediation applications to mitigate the adverse effects of environmental pollution.

期刊论文 2024-12-01 DOI: 10.1016/j.biotechadv.2024.108476 ISSN: 0734-9750
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页