共检索到 2

Alkali-activated materials have gained increasing popularity in the field of soil barrier materials due to their high strength and low environmental impact. However, barrier materials made from alkali-activated materials still suffer from long setting times and poor barrier performance in acidic, alkaline, and saline environments, which hinders the sustainable development of green alkali-activated materials. Herein, coconut shell biochar, sodium silicate-based adhesives, and polyether polyol/polypropylene polymers were used for multi-stage material modification. The modified materials were evaluated for barrier performance, rapid formation, and resistance to acidic, alkaline, and saline environments, using metrics such as compressive strength, permeability, mass loss, and VOC diffusion efficiency. The results indicated that adhesive modification reduced the material's setting time from 72 to 12 h. Polymer modification improved resistance to corrosion by 15-20%. The biochar-containing multi-stage modified materials achieved VOC diffusion barrier efficiency of over 99% in both normal and corrosive conditions. These improvements are attributed to the adhesive accelerating calcium silicate hydration and forming strength-enhancing compounds, the polymer providing corrosion resistance, and biochar enhancing the volatile organic compounds (VOC) barrier properties. The combined modification yielded a highly effective multi-stage green barrier material suitable for rapid barrier formation and corrosion protection. These findings contribute to evaluating multi-level modified barrier materials' effectiveness and potential benefits in this field and provide new insights for the development of modified, green, and efficient alkali-activated barrier materials, promoting the green and sustainable development of soil pollution control technologies.

期刊论文 2025-05-11 DOI: 10.3390/su17104344

Chitosan (CTS), a natural biopolymer derived from chitin, has garnered significant attention owing to its potential chemical, biological, and physical properties, such as biocompatibility, bioactivity, and biosafety. This comprehensive review traces the historical development of CTS-based materials and delves into their specific applications across various fields. The study highlights the evolution of CTS from its initial discovery to its current state, emphasizing key milestones and technological advancements that have expanded its utility. Despite the extensive research, the synthesis and functionalization of CTS to achieve desired properties for targeted applications remain a challenge. This review addresses current problems such as the scalability of production, consistency in quality, and the environmental impact of extraction and modification processes. Additionally, it explores the novel applications of CTS-based materials in biomedicine, agriculture, environmental protection, and food industry, showcasing innovative solutions and future potentials. By providing a detailed analysis of the current state of CTS research and identifying gaps in knowledge, this review offers a valuable resource for researchers and industry professionals. The novelty of this work lies in its holistic approach, combining historical context with a forward-looking perspective on emerging trends and potential breakthroughs in the field of CTS-based functional materials. Therefore, this review will be helpful for readers by summarizing recent advances and discussing prospects in CTS-based functional materials.

期刊论文 2024-11-01 DOI: 10.1016/j.ijbiomac.2024.136243 ISSN: 0141-8130
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页