The pollution of metal ions triggers great risks of damaging biodiversity and biodiversity-driven ecosystem multifunctioning, whether microbial functional gene can mirror ecosystem multifunctionality in nonferrous metal mining areas remains largely unknown. Macrogenome sequencing and statistical tools are used to decipher linkage between functional genes and ecosystem multifunctioning. Soil samples were collected from subdams in a copper tailings area at various stages of restoration. The results indicated that the diversity and composition of soil bacterial communities were more sensitive than those of the fungal and archaeal communities during the restoration process. The mean method revealed that nutrient, heavy metal, and soil carbon, nitrogen, and phosphorus multifunctionality decreased with increasing bacterial community richness, whereas highly significant positive correlations were detected between the species richness of the bacterial, fungal, and archaeal communities and the multifunctionality of the carbon, nitrogen, and phosphorus functional genes and of functional genes for metal resistance in the microbial communities. SEM revealed that soil SWC and pH were ecological factors that directly influenced abiotic factor-related EMF; microbial diversity was a major biotic factor influencing the functional gene multifunctionality of the microbiota; and different abiotic and biotic factors associated with EMF had differential effects on whole ecosystem multifunctionality. These findings will
Background and AimsMicroorganisms are essential for carbon and nitrogen cycling in the active layer of permafrost regions, but the distribution and controlling factors of microbial functional genes across different land cover types and soil depths remain poorly understood. This gap hinders accurate predictions of carbon and nitrogen cycling dynamics under climate change. This study aims to explore how land cover type and soil depth influence microbial functional gene distribution in the Qinghai-Tibet Plateau's permafrost regions.MethodsSoil samples (0-50 cm) were collected from alpine wet meadows, alpine meadows, and alpine steppes. We analyzed the samples for physicochemical properties, microbial amplicon sequencing, and metagenomic sequencing. Correlation analyses were conducted between microbial community structure, functional genes, and environmental factors to identify the drivers of microbial carbon and nitrogen cycling.ResultsBacterial richness was 6.03% lower in steppe soils compared to wet meadow soils. Steppe soils exhibited the highest aerobic respiration potential, while deeper wet meadow soils had enhanced anaerobic carbon fixation potential and a higher abundance of carbon decomposition-related genes. Nitrogen assimilation was highest in steppe surface soils, whereas denitrification and ammonification were greatest in wet meadow soils. Carbon cycling potential was influenced by total soil carbon, nitrogen, phosphorus, and belowground biomass, while nitrogen cycling was driven by belowground biomass, soil moisture, and pH.ConclusionOur findings underscore the role of environmental factors in microbial functional gene distribution, providing new insights for modeling carbon and nitrogen cycling in alpine permafrost ecosystems under climate change.
Iron (Fe) minerals possess a huge specific surface area and high adsorption affinity, usually considered as rust tanks of organic carbon (OC), playing an important role in global carbon storage. Microorganisms can change the chemical form of Fe by producing Fe-chelating agents such as side chains and form a stable complex with Fe(III), which makes it easier for microorganisms to use. However, in seasonal frozen soil thawing, the succession of soil Fe-cycling microbial communities and their coupling relationship with Fe oxides and Fe-bound organic carbon (Fe-OC) remains unclear. We characterized changes in the Fe phase, Fe-OC, Fe-oxidizing bacteria (FeOB), and Fe-reducing bacteria (FeRB) in the subsoil and analyzed the microbial mechanism underlying Fe-OC changes in alpine grassland by constructing a composite structural equation model (SEM). We found that the Fe(III) content consistently exceeded that of Fe(II). Among the three types of Fe oxides, organically complex Fe (Fe-p) decreased from 2.54 to 2.30 gkg(-1), whereas the opposite trend was observed for poorly crystalline Fe (Fe-o). The Fe-OC content also decreased (from 10.31 to 9.47 gkg(-1); p < 0.05). Fe-cycling microorganisms were markedly affected by the thawing of frozen soil (except FeRB). Fe-p and Feo directly affected changes in Fe-OC. Soil moisture (SM) and FeOB were significant indirect factors affecting Fe-OC changes. Freeze-thaw changes in the subsoil of alpine grassland in Central Asia significantly affected FeOB and Fe oxides, thus affecting the Fe-OC content. To the best of our knowledge, this was the first study to examine the influence of Fe-cycling microorganisms on the Fe phase and Fe-OC in the soil of alpine grassland in Central Asia. Overall, our findings provide scientific clues for exploring the biogeochemical cycle process in future climate change.
Heavy metal pollution can have adverse impacts on microorganisms, plants and even human health. To date, the impact of heavy metals on bacteria in farmland has yielded poor attention, and there is a paucity of knowledge on the impact of land type on bacteria in mining area with heavy metal pollution. Around a metal-contaminated mining area, two soil depths in three types of farmlands were selected to explore the composition and function of bacteria and their correlations with the types and contents of heavy metals. The compositions and functions of bacterial communities at the three different agricultural sites were disparate to a certain extent. Some metabolic functions of bacterial community in the paddy field were up-regulated compared with those at other site. These results observed around mining area were different from those previously reported in conventional farmlands. In addition, bacterial community composition in the top soils was relatively complex, while in the deep soils it became more unitary and extracellular functional genes got enriched. Meanwhile, heavy metal pollution may stimulate the enrichment of certain bacteria to protect plants from damage. This finding may aid in understanding the indirect effect of metal contamination on plants and thus putting forward feasible strategies for the remediation of metal-contaminated sites. Main findings of the work: This was the first study to comprehensively explore the influence of heavy metal pollution on the soil bacterial communities and metabolic potentials in different agricultural land types and soil depths around a mining area.
Nitrous oxide (N2O) is the third most important greenhouse gas, and can damage the atmospheric ozone layer, with associated threats to terrestrial ecosystems. However, to date it is unclear how extreme precipitation and nitrogen (N) input will affect N2O emissions in temperate desert steppe ecosystems. Therefore, we conducted an in -situ in a temperate desert steppe in the northwest of Inner Mongolia, China between 2018 and 2021, in which N inputs were combined with natural extreme precipitation events, with the aim of better understanding the mechanism of any interactive effects on N2O emission. The study result showed that N2O emission in this desert steppe was relatively small and did not show significant seasonal change. The annual N2O emission increased in a non-linear trend with increasing N input, with a much greater effect of N input in a wet year (2019) than in a dry year (2021). This was mainly due to the fact that the boost effect of high N input (on June 17th 2019) on N2O emission was greatly amplified by nearly 17-46 times by an extreme precipitation event on June 24th 2019. In contrast, this greatly promoting effect of high N input on N2O emission was not observed on September 26th 2019 by a similar extreme precipitation event. Further analysis showed that soil NH4+-N content and the abundance of ammonia oxidizing bacteria (amoA (AOB)) were the most critical factors affecting N2O emission. Soil moisture played an important indirect role in regulating N2O emission, mainly by influencing the abundance of amoA (AOB) and de-nitrification functional microorganisms (nosZ gene). In conclusion, the effect of extreme precipitation events on N2O emission was greatly increased by high N input. Furthermore, in this desert steppe, annual N2O flux is co-managed through soil nitrification substrate concentration (NH4+-N), the abundance of soil N transformation functional microorganisms and soil moisture. Overall, it was worth noting that an increase in extreme precipitation coupled with increasing N input may significantly increase future N2O emissions from desert steppes.
Large amounts of carbon sequestered in permafrost on the Tibetan Plateau (TP) are becoming vulnerable to microbial decomposition in a warming world. However, knowledge about how the responsible microbial community responds to warming-induced permafrost thaw on the TP is still limited. This study aimed to conduct a comprehensive comparison of the microbial communities and their functional potential in the active layer of thawing permafrost on the TP. We found that the microbial communities were diverse and varied across soil profiles. The microbial diversity declined and the relative abundance of Chloroflexi, Bacteroidetes, Euryarchaeota, and Bathyarchaeota significantly increased with permafrost thawing. Moreover, warming reduced the similarity and stability of active layer microbial communities. The high-throughput qPCR results showed that the abundance of functional genes involved in liable carbon degradation and methanogenesis increased with permafrost thawing. Notably, the significantly increased mcrA gene abundance and the higher methanogens to methanotrophs ratio implied enhanced methanogenic activities during permafrost thawing. Overall, the composition and functional potentials of the active layer microbial community in the Tibetan permafrost region are susceptible to warming. These changes in the responsible microbial community may accelerate carbon degradation, particularly in the methane releases from alpine permafrost ecosystems on the TP. Warming-induced permafrost thawing increased the abundance of anaerobic microorganisms and functional genes involved in labile carbon degradation and methane cycles, which could accelerate soil carbon degradation on TP.
Permafrost thaw could induce substantial carbon (C) emissions to the atmosphere, and thus trigger a positive feedback to climate warming. As the engine of biogeochemical cycling, soil microorganisms exert a critical role in mediating the direction and strength of permafrost C-climate feedback. However, our understanding about the impacts of thermokarst (abrupt permafrost thaw) on microbial structure and function remains limited. Here we employed metagenomic sequencing to analyze changes in topsoil (0-15 cm) microbial communities and functional genes along a permafrost thaw sequence (1, 10, and 16 years since permafrost collapse) on the Tibetan Plateau. By combining laboratory incubation and a two-pool model, we then explored changes in soil labile and stable C decomposition along the thaw sequence. Our results showed that topsoil microbial alpha-diversity decreased, while the community structure and functional gene abundance did not exhibit any significant change at the early stage of collapse (1 year since collapse) relative to non-collapsed control. However, as the time since the collapse increased, both the topsoil microbial community structure and functional genes differed from the control. Abundances of functional genes involved in labile C degradation decreased while those for stable C degradation increased at the late stage of collapse (16 years since collapse), largely driven by changes in substrate properties along the thaw sequence. Accordingly, faster stable C decomposition occurred at the late stage of collapse compared to the control, which was associated with the increase in relative abundance of functional genes for stable C degradation. These results suggest that upland thermokarst alters microbial structure and function, particularly enhances soil stable C decomposition by modulating microbial functional genes, which could reinforce a warmer climate over the decadal timescale.
Boreal forests in permafrost zone store significant quantities of carbon that are readily threatened by increases in fire frequency and temperature due to climate change. Soil carbon is primarily released by microbial decomposition that is sensitive to environmental conditions. Under increasing disturbances of wildfire, there is a pressing need to understand interactions between wildfires and microbial communities, thereby to predict soil carbon dynamics. Using Illumina MiSeq sequencing of bacterial 16S rDNA and GeoChip 5.0K, we compared bacterial communities and their potential functions at surface and near-surface permafrost layers across a chronosequence ( > 100 years) of burned forests in a continuous permafrost zone. Postfire soils in the Yukon and the Northwest Territories, Canada, showed a marked increase in active layer thickness. Our results showed that soil bacterial community compositions and potential functions altered in 3-year postfire forest (Fire(3)) comparing to the unburned forests. The relative abundance of Ktedonobacteria (Chloroflexi) was higher in Fire(3) surface soils, while Alphaproteobacteria and Betaproteobacteria (Proteobacteria) were more abundant in unburned ones. Approximately 37% of the variation in community composition can be explained by abiotic variables, whereas only 2% by biotic variables. Potential functional genes, particularly for carbon degradation and anammox, appeared more frequent in Fire 3 than in unburned soils. Variations in functional gene pools were mainly driven by environmental factors (39%) and bacterial communities (20%; at phylum level). Unexpectedly, wildfire solely altered bacterial communities and their functional potentials of the surface layers, not the near-permafrost layers. Overall, the response of bacterial community compositions and functions to wildfire and the environment provides insights to re-evaluate the role of bacteria in decomposition.