A soil-water-air fully coupled numerical framework is proposed to predict the deformation and hydraulic behavior of soils under different saturation states in response to dynamic loading. The proposed framework is developed based on the mixture theory of porous media and the governing equations are discretized with the finite-element method. The soil behavior is modeled by a sophisticated constitutive model. The hysteresis characteristic and the mutual dependence between volume change and the degree of saturation in the soil-water characteristic curve (SWCC) are considered. A consistent description for both unsaturated and saturated soils is achieved by taking the effective stress and the degree of saturation as the two independent variables, with only one set of unified mechanical/hydraulic parameters. The numerical framework is first validated at the element level against undrained and unvented strain-controlled cyclic triaxial test results of unsaturated Toyoura sand. The reliability of the proposed framework in addressing boundary value problems is further validated by the simulation of a dynamic centrifuge model test. The numerical framework is further applied to the dynamic stability analysis of unsaturated embankments with different initial water contents. The results show that initially unsaturated embankments with relatively high water content are susceptible to liquefaction during seismic loading. There is a significant correlation between the liquefaction and the deformation-induced soil saturation. Deformation-induced saturation initially occurs at the toe of the embankment and then gradually extends to the areas near the lateral surfaces of the embankment, which triggers the development of shear bands.
Landslide dams consist of unconsolidated heterogeneous material and lack engineering measures to drain water and control pore water pressure. They may be porous and seepage through them could potentially lead to piping failure. In this research, the internal processes within a long-existing landslide dam are assessed under transient seepage force. The implemented approach includes a 3D finite element numerical simulation executing fully coupled flow-deformation and consolidation methods based on hydraulic data measurements and geotechnical laboratory tests. The nonlinear constitutive model 'Hardening Soil' is applied to accurately calculate the stressinduced pore water pressure, effective stress, deformation, and flow. Further, the possibility of slope failure due to seepage force is investigated through the strength reduction method. The results highlight the dependency of the seepage flow on the corresponding variation of the relative permeability and saturation in the soil mediums under different rates of seepage force. Small rates of seepage force, however, impose deformation at the dam's crown. High effective stress is obtained at negative small rates of seepage force where the long duration of fluctuation is modeled. In the drawdown simulation, there is a reverse relation between effective stress and the rate of the seepage force. Through the modeling process and based on the measured data, two seepage paths are detected within the landslide dam, while their activation depends on the lake level. The modeling approach and the required data analysis are suggested for utilization in further studies regarding the seepage process understanding at the long-existing landslide dams and their hazard assessments in addition to the common geomorphological approaches.