共检索到 77

The application of prefabricated assembly technology in underground structures has increasingly garnered attention due to its potential for urban low-carbon development. However, given the vulnerability of such structures subjected to unexpected seismic events, a resilient prefabricated underground structure is deemed preferable for mitigating seismic responses and facilitating rapid recovery. This study proposes a resilient slip-friction connection-enhanced self-centering column (RSFC-SCC) for prefabricated underground structures to promote the multi-level self-centering benefits against multi-intensity earthquakes. The RSFC-SCC is composed of an SCC with two sub-columns and a series of multi-arranged replaceable RSFCs, intended to substitute the fragile central column. The mechanical model and practical manufacturing approach are elucidated, emphasizing its potential multi-level self-centering benefits and working mechanism. Given the established simulation model of RSFC-SCC-equipped prefabricated underground structures, the seismic response characteristics and mitigation capacity are investigated for a typical underground structure, involving robustness against various earthquakes. A multi-level self-centering capacity-oriented design with suggested parameter selection criteria is proposed for the RSFC-SCC to ensure that prefabricated underground structures achieve the desired vibration mitigation performance. The results show that the SCC with multi-arranged replaceable RSFCs exhibits a significant vibration isolating effect and enhanced self-centering capacity for the entire prefabricated underground structure. Benefiting from the multi-level self-centering process, the RSFC-SCC illustrates a robust capacity that adapts to varying intensities of earthquakes. The multi-level self-centering capacity-oriented design effectively facilitates the target seismic response control for the prefabricated underground structures. The energy dissipation burden and residual deformation of primary structures are mitigated within the target performance framework. Given the replacement ease of RSFCs and SCC, a rapid recovery of the prefabricated underground structure after an earthquake is ensured.

期刊论文 2025-10-01 DOI: 10.1016/j.tust.2025.106776 ISSN: 0886-7798

Friction characteristics are critical mechanical properties of clay, playing a pivotal role in the structural stability of cohesive soils. In this study, molecular dynamics simulations were employed to investigate the shear behavior of undrained montmorillonite (MMT) nanopores with varying surface charges and interlayer cations (Na+, K+, Ca2+), subjected to different normal loads and sliding velocities. Consistent with previous findings, our results confirm that shear stress increases with normal load. However, the normal load-shear stress curves reveal two distinct linear regions, indicating segmented friction behavior. Remarkably, the friction coefficient declines sharply beyond a critical pressure point, ranging from 5 to 7.5 GPa, while cohesion follows an inverse trend. The elevated friction coefficient at lower pressures is attributed to the enhanced formation of hydrogen bonds and concomitant changes in density distribution. Furthermore, shear strength was observed to increase with sliding velocities, normal loads, and surface charges, with Na-MMT exhibiting superior shear strength compared to KMMT and Ca-MMT. Interestingly, the friction coefficient shows a slight decrease with increasing surface charge, while ion type exerts a minimal effect. In contrast, cohesion is predominantly influenced by surface charge and remains largely unaffected by ion type, except under extreme pressures and velocities.

期刊论文 2025-09-01 DOI: 10.1016/j.apsusc.2025.163382 ISSN: 0169-4332

Pile penetration in soft ground involves complex mechanisms, including significant alterations in the soil state surrounding the pile, which influence the pile negative skin friction (NSF) over time. However, the pile penetration process is often excluded from finite element analysis. This paper investigates the impact of pile penetration on the generation of NSF and dragload. A stable node-based smoothed particle finite element method (SNS-PFEM) framework is introduced for two-dimensional axisymmetric conditions and coupled consolidation, incorporating the ANICREEP model of soft soil with a modified cutting-plane algorithm. A field case study with penetration process is simulated to verify the numerical model's performance, followed by a parametric analysis on the effect of penetration rate on NSF during consolidation. Results indicate that without the pile penetration process in NSF analysis can result in an unsafely low estimation of NSF and dragload magnitudes. The penetration rate affects dragload only at the initial consolidation stage. As consolidation progresses, dragload converges to nearly the same magnitude across different rates. Additionally, current design methods inadequately predict the beta value (where beta is an empirical factor correlating vertical effective stress of soil with the pile skin friction) and its time dependency, for which a new empirical formula for the time-dependent beta value is proposed and successfully applied to other field cases.

期刊论文 2025-09-01 DOI: 10.1016/j.compgeo.2025.107315 ISSN: 0266-352X

This study presents a novel seismic control system, the Mega-Sub Controlled Structure System (MSCSS), to address vibration control challenges in tall and super-tall buildings under intense seismic excitations. The proposed hybrid VD-TFPB-controlled MSCSS integrates Triple Friction Pendulum Bearings (TFPBs) as base isolators with Viscous Dampers (VDs) between the mega frame and the vibration control substructure, enhancing damping and seismic performance. MSCSS without VD and MSCSS with VD models are established and verified using an existing benchmark. The hybrid VD-TFPB-controlled MSCSS is then developed to evaluate its vibration control response while considering soil-structure interaction (SSI). Numerical analyses with earthquake records demonstrate its superior performance compared to MSCSS without and with VD systems. Nonlinear dynamic analyses reveal that the hybrid system significantly improves vibration control. However, under SSI, increased structural flexibility leads to higher frame stress and more plastic hinges, particularly on soft soil, which amplifies vibrations. Despite these challenges, the hybrid VD-TFPB-controlled MSCSS effectively enhances seismic resilience, offering a robust solution for tall buildings.

期刊论文 2025-08-01 DOI: 10.1016/j.istruc.2025.109094 ISSN: 2352-0124

In transparent soil model experiments, fused quartz stands out as the most promising substitute for natural sand. However, there is still a lack of a comprehensive evaluation system to assess the similarity of its mechanical properties to natural sand. Therefore, a similarity evaluation method based on constitutive model simulation is proposed. First, due to the high friction angle characteristic of fused quartz in transparent soil model tests, multiple oedometer compression and shear box tests were conducted on various gradations of fused quartz. Subsequently, a hypoplastic sand model, which is abundant in natural sand data, stable, and has a straightforward calibration process, was then selected for parameter calibration of fused quartz. Finally, the substitutability of fused quartz for natural sand was evaluated by comparing constitutive parameters and shear box simulation, considering factors such as initial void ratio and confining pressure. The results indicate that the hypoplastic sand model accurately captures the shear behavior of fused quartz. Particles with grain sizes ranging from 0.5 to 2 mm weaken the strength of well-graded fused quartz. The findings also suggest that well-graded fused quartz maintains consistent shear behavior with various natural sands. By contrast, the applicability of single-sized fused quartz is limited.

期刊论文 2025-06-01 DOI: 10.1061/IJGNAI.GMENG-10771 ISSN: 1532-3641

We propose a test procedure to quantify the response of dry sand to cyclic compressional loading under constrained conditions. The test procedure is designed to represent the response of sand layers to upward propagating P-waves during an earthquake event. Such P-waves are prominent within the vertical component of earthquake ground-motions, which is often ignored or simplified in common practice of seismic hazard analysis, despite its potential damaging effects. In the proposed method, the lateral deformation is restrained within a triaxial device, through variations of the cell pressure, thus maintaining pure compression while allowing moderate to large axial strains. Both dry and saturated samples are tested, and the compressive stiffness is computed from the full stress-strain loops. We show that as long as drained conditions are maintained and volume changes are allowed - the response of a saturated sample to slow cyclic loading is representative of the response of dry sand to seismic loading, despite the differences in saturation and in strain rates. Finally, we compare the proposed method to cyclic loading within a rigid cell and discuss the differences and limitations that the new proposed method overcomes.

期刊论文 2025-05-14 DOI: 10.1038/s41598-025-00381-z ISSN: 2045-2322

The foundation soil is often over-consolidated due to the change of soil consolidation history in practical engineering. The effect of over-consolidation ratio (OCR) on the mechanical properties and microstructure of silt has not been sufficiently studied especially on the Yellow River alluvial silt. A series of triaxial undrained shear tests and corresponding SEM tests of the Yellow River alluvial silt were then carried out under different confining pressures and OCRs. The stress and strain curves of the silt show strain-hardening characteristics. The hardening characteristics become more significant, and the peak stress increases significantly as the confining pressure and OCR increase. The silt specimens show phase transformation behavior under a normal consolidation state, which is characterized by stages of initial contraction, temporary phase transformation, and later dilation. The silt tends to be more dilative for over-consolidated specimens and the dilation behavior was more obvious with higher OCRs. The deviatoric stress of the silt can be normalized by the consolidation pressure. The normalized undrained shear strength of the silt generally increased with OCR. The cohesion and internal friction angle of the silt increase with OCR increasing which behaved more like the typical clays as it has more silt content and clay content. The apparent porosity decreases and the average shape coefficient increases with the increase of confining pressure and OCR which shows the silt is denser and the grain shape is closer to circular under higher confining pressure and OCR. The relationship between macroscopic strength characteristics and the microscopic apparent porosity is also discussed. It shows that the macroscopic peak strength gradually decreases with the increase of the microscopic apparent porosity. Such behavior is mainly caused by the internal pore volume reduction and the rise in the contact area between soil particles.

期刊论文 2025-05-09 DOI: 10.3389/feart.2025.1547297

Understanding the shear mechanical behaviors and instability mechanisms of rock joints under dynamic loading remains a complex challenge. This research conducts a series of direct shear tests on real rock joints subjected to cyclic normal loads to assess the influence of dynamic normal loading amplitude (Fd), dynamic normal loading frequency (fv), initial normal loading (Fs), and the joint roughness coefficient (JRC) on the mechanical properties and instability responses of these joints. The results show that unstable sliding is often accompanied by friction weakening due to dynamic normal loads. A significant negative correlation exists between cyclic normal loads and the normal displacement during the shearing process. Dynamic normal load paths vary the contact states of asperities on the rough joint surfaces, impacting the stick-slip instability mechanism of the joints, which in turn affects both the magnitude and location of the stress drop during the stick-slip events, particularly during the unloading phases. An increasing Fd results in a more stable shearing behavior and a reduction in the amplitude of stick-slip stress drops. The variation in fv influences the amplitude of stress drop for the joints during shear, characterized by an initial decrease (fv = 0.25-2 Hz) before exhibiting an increment (fv = 2-4 Hz). As Fs increases, sudden failures of the interlocked rough surfaces are more prone to occur, thus producing enhanced instability and a more substantial stress drop. Additionally, a larger JRC intensifies the instability of the joints, which would induce a more pronounced decline in the stick-slip stress. The Rate and state friction (RSF) law can provide an effective explanation for the unstable sliding phenomena of joints during the oscillations of normal loads. The findings may provide certain useful references for a deeper comprehension of the sliding behaviors exhibited by rock joints when subjected to cyclic dynamic disturbances. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-05-01 DOI: 10.1016/j.jrmge.2024.05.049 ISSN: 1674-7755

Shield tunneling inevitably disturbs the surrounding soil, primarily resulting in changes in stress state, stress path, and strain. Modifications to certain parameters, such as shield thrust, shield friction, and soil loss, are made based on the elastic mechanics Mindlin solution and the mirror method, and a calculation expression for additional soil stresses induced by tunneling was derived. Additional soil stresses are calculated using the parameters of the Hangzhou Metro Kanji section. 3D principal stress paths and deviations of the principal stress axes near the tunnel crown, waist, and invert during shield tunneling were obtained by applying a transition matrix orthogonal transformation. These results are compared with experimental data to validate the theoretical solution's accuracy. The stress distribution along the tunneling direction and the 3D principal stress paths and deviations of the principal stress axes in the surrounding soil are determined. The results are as follows: The additional soil stresses along the tunneling direction follow a normal distribution and an S-shape. Under the combined influence of three construction mechanics factors, the shear stress component is approximately 1/3 to 1/2 of the normal stress and should not be neglected. During shield tunneling, the deviation angle of the principal stress axis at the tunnel crown changes from 90 degrees to 180 degrees, with little change in the magnitude of the principal stress. At the invert, the magnitude of the principal stress rapidly increases from 0.25 kPa to 8 kPa, with minimal deviation in the principal stress axis. At the shoulder, the principal stress variation and axis deviation are small. At the foot of the arch, the deviation angle of the major and minor principal stress axes is larger, while the magnitude of the principal stress slightly changes. At the waist, the deviation angle of the major principal stress is larger, and the magnitude of the minor principal stress significantly changes. A strategy for addressing changes in soil stress paths during shield tunnel construction is also proposed.

期刊论文 2025-05-01 DOI: 10.1016/j.tust.2025.106511 ISSN: 0886-7798

In this paper, an extensive series of direct shear box tests (99 tests) were conducted to explore and compare the effects of raw and treated natural fibers, specifically Doum fibers on the mechanical behavior of three categories of sandy soils with distinct mean particle sizes (D50 = 0.63, 1, and 2 mm). Specimens from every soil category, containing 0 to 0.8% raw Doum fibers and 0 to 1% treated Doum fibers in incremental step of 0.2%, were reconstituted at an initial relative density of (Dr = 87 +/- 3%) and subjected to three different initial normal stresses (100, 200, and 400 kPa). The obtained results indicate that incorporating raw or treated Doum fibers improve the mechanical and rheological properties (internal friction angle, ductility, and maximum dilatancy angle) of the tested mixtures up to specific thresholds Doum fiber content (FD = 0.6% and FTD = 0.8% for raw and treated Doum fibers respectively). Beyond these limiting values, the mechanical and rheological properties decreased with further increases in Doum fiber content. Additionally, specimens reinforced with treated Doum fibers exhibit higher shear strength than that of the raw Doum fibers for all tested parameters. Based on the experimental results, it has been found to suggest a reliable correlation between Particle Size Distribution (PSD) characteristics and mechanical properties for all reconstituted specimens. The recorded soil trend is especially pronounced for the mean grain size (D50) ranging between 1 and 2 mm, where a notable increase in shear resistance is noticed. The analysis of the obtained outcome suggests the introduction of new enhancement factors (EF tau peak and EF phi degrees) as useful parameters for predicting the mechanical behavior of sand-fibers mixtures. Furthermore, new relationships have been developed to forecast changes in mechanical properties (peak shear strength, internal friction angle, and maximum dilatancy angle) of the tested mixtures under the impact of the selected parameters (FD/TD, D50, and sigma n).

期刊论文 2025-04-01 DOI: 10.1007/s40999-024-01062-0 ISSN: 1735-0522
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 末页
  • 跳转
当前展示1-10条  共77条,8页