Nano-SiO2, a highly acclaimed nanomaterial for enhancing cemented soil, has shown remarkable improvements in the physical properties and microstructure of cemented soil. The organic matter content in soil plays a crucial role in determining the engineering quality of cemented soil, regardless of whether it is in a freshwater or seawater environment. Therefore, when employing Nano-SiO2 as an amendment for cemented soil, it is crucial to consider the influence of different soil types and environmental conditions on the effectiveness of the enhancement. This study presents a scientific approach for enhancing the consolidation of cemented soil by incorporating Nano-SiO2 as an additive in both freshwater and seawater environments. To ensure consistency with practical construction practices, the experiments were divided into freshwater preparation and curing groups, as well as seawater preparation and curing groups. In soils with distinct characteristics, we utilized five different gradient levels of Nano-SiO(2 )additives and subjected the cemented soil specimens to a 60-day immersion curing process. Subsequently, unconfined compressive strength (UCS) tests were performed on samples that had reached the specified curing age to investigate the alterations in the mechanical properties of cemented soil caused by Nano-SiO2. The internal microstructure and chemical composition of the cemented soil were analyzed utilizing scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The UCS and deformation modulus of cement soil composed of silty clay A and silty clay D with low organic matter content in fresh water environment increased by 109%, 24.7% and 117%, 43% respectively after adding 3.2% Nano-SiO2; In freshwater environments, the cemented soil composed of high-organic-matter content mucky silty clay B, muddy soil C, and dredged silt E experienced respective increases of 16% and - 27%, 2% and 42%, 6% and - 6% in UCS and deformation modulus after adding 3.2% Nano-SiO2; The UCS and deformation modulus of cemented soil with high organic matter content in seawater and freshwater environment increased by 3% and 6% ( Soil B), 12% and 67% ( Soil C), 23% and 27% ( Soil E), respectively, after adding 3.2% Nano-SiO2; The increase of UCS and deformation modulus of cement soil by adding Nano-SiO(2 )is negatively correlated with the content of organic matter. in the case of cemented soil with high organic matter content in a seawater environment, the specific type of soil not only impacts UCS and deformation modulus of the soil but also influences the effectiveness of enhancement. Due to the organic matter, the rate of hydration reaction in cemented soil is reduced, resulting in a decrease in the formation of pozzolanic reaction products with SiO2. As a result, the improvement in Nano-SiO(2 )effectiveness is diminished.
Microplastics have been noticed as widespread in an aquatic environment at the microscale. They have nonstop increased due to the increase in the production of synthetic plastics, population and poor waste management. They are ubiquitous in nature and slowly degrade in water and soil. They are emerging pollutants that have received interest from public audiences and research communities. They have great stability and can adsorb various other pollutants like pesticides, heavy metals, etc. After entering the freshwater environment, microplastics can be stored in the tissue of organisms and stay for a long time. They can generate a serious threat to freshwater ecosystems and can cause physical damage to organisms. Visual identification, Raman spectroscopy, pyrolysis-gas chromatography-mass spectrometry (Pyro-GC-MS), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and combined methods are the commonly known methods for the quantification and identification of microplastics. The detected concentration of microplastics depends on the sampling method, locations and identification techniques. The authors assessed the sources, transport, impacts, identification and characterization, and treatment of microplastics in freshwater environments in detail. The authors are also giving some recommendations for the minimization of the MPs from the freshwater environment. This review article will provide the baseline facts for the investigators to do more research on microplastic pollution in the future.