共检索到 68

Soft soil subgrades often present significant geotechnical challenges under cyclic loading conditions associated with major infrastructure developments. Moreover, there has been a growing interest in employing various recycled tire derivatives in civil engineering projects in recent years. To address these challenges sustainably, this study investigates the performance of granular piles incorporating recycled tire chips as a partial replacement for conventional aggregates. The objective is to evaluate the cyclic behavior of these tire chip-aggregate mixtures and determining the optimum mix for enhancing soft soil performance. A series of laboratory-scale, stress-controlled cyclic loading tests were conducted on granular piles encased with combi-grid under end-bearing conditions. The granular piles were constructed using five volumetric proportions of (tire chips: aggregates) (%) of 0:100, 25:75, 50:50, 75:25, and 100:0. The tests were performed with a cyclic loading amplitude (qcy) of 85 kPa and a frequency (fcy) of 1 Hz. Key performance indicators such as normalized cyclic induced settlement (Sc/Dp), normalized excess pore water pressure in soil bed (Pexc/Su), and pile-soil stress distribution in terms of stress concentration ratio (n) were analyzed to assess the effectiveness of the different mixtures. Results indicate that the ordinary granular pile (OGP) with (25 % tire chips + 75 % aggregates) offers an optimal balance between performance and sustainability. This mixture reduced cyclic-induced settlement by 86.7 % compared to the OGP with (0 % TC + 100 % AG), with only marginal losses in performance (12.3 % increase in settlement and 2.8 % reduction in stress transfer efficiency). Additionally, the use of combi-grid encasement significantly improved the overall performance of all granular pile configurations, enhancing stress concentration and reducing both settlement and excess pore water pressure. These findings demonstrate the viability of using recycled tire chips as a sustainable alternative in granular piles, offering both environmental and engineering benefits for soft soil improvement under cyclic loading.

期刊论文 2025-11-01 DOI: 10.1016/j.soildyn.2025.109598 ISSN: 0267-7261

Landslides pose significant risks to human life and infrastructure, particularly in mountainous regions like Inje, South Korea. This study aims to develop detailed landslide susceptibility maps (LSMs) using statistical (i.e., Frequency Ratio (FR), Logistic Regression (LR)) models and a hybrid integrated approach. These models incorporated various factors influencing landslides, including aspect, elevation, rainfall, slope, soil depth, slope length, and landform, derived from comprehensive geospatial datasets. The FR method assesses the likelihood of landslides based on historical occurrences relative to specific factor classes, while the LR method predicts landslide susceptibility through the statistical modeling of multiple predictor variables. The results from the FR, LR, and hybrid methods showed that the cumulative area covered by high and very high landslide susceptibility zones was 13.8%, 13.0%, and 14.28%, respectively. The results were validated using Receiver Operating Characteristic (ROC) curves and the Area Under the Curve (AUC), revealing AUC values of 0.83 for FR, 0.86 for LR, and 0.864 for the hybrid method, indicating high predictive accuracy. Subsequently, we used K-mean clustering algorithms on the hybrid LSI to identify the higher LSI cluster of the region. Furthermore, sensitivity analysis based on landslide density confirmed that all methods accurately identified high-risk areas. The resulting LSMs provide critical insights for land-use planning, infrastructure development, and disaster risk management, enhancing predictive accuracy and aiding in the prevention of future landslide damage.

期刊论文 2025-07-01 DOI: 10.1007/s12665-025-12376-0 ISSN: 1866-6280

Increasing demand on clean energy leads to the expanded construction of offshore wind turbines (OWT) worldwide. Different types of foundations of OWTs includes gravity, jackets, monopiles etc. When functioning, OWTs face severe conditions with complex loadings (e.g. varying loading amplitudes and loading frequencies). In this study, the influence of the loading amplitude and loading frequency on the lateral displacement of monopiles in marine clay was investigated by conducting 1-g physical model tests at a scale of 1:30. The p-y curves at different depths were derived as well from the recorded moment distribution along the monopile. According to the results, the lateral displacement increases with the loading amplitude and frequency and the monopiles experience response of shakedown under cyclic loading. The lateral displacement after N cycles is related to the initial displacement via an extended logarithmic function. Besides, the p-y curves available in literature underestimate the soil resistance but hyperbolic functions provide comparatively closer predictions.

期刊论文 2025-06-15 DOI: 10.1016/j.oceaneng.2025.121114 ISSN: 0029-8018

The real-time monitoring of fracture propagation during hydraulic fracturing is crucial for obtaining a deeper understanding of fracture morphology and optimizing hydraulic fracture designs. Accurate measurements of key fracture parameters, such as the fracture height and width, are particularly important to ensure efficient oilfield development and precise fracture diagnosis. This study utilized the optical frequency domain reflectometer (OFDR) technique in physical simulation experiments to monitor fractures during indoor true triaxial hydraulic fracturing experiments. The results indicate that the distributed fiber optic strain monitoring technology can efficiently capture the initiation and expansion of fractures. In horizontal well monitoring, the fiber strain waterfall plot can be used to interpret the fracture width, initiation location, and expansion speed. The fiber response can be divided into three stages: strain contraction convergence, strain band formation, and postshutdown strain rate reversal. When the fracture does not contact the fiber, a dual peak strain phenomenon occurs in the fiber and gradually converges as the fracture approaches. During vertical well monitoring in adjacent wells, within the effective monitoring range of the fiber, the axial strain produced by the fiber can represent the fracture height with an accuracy of 95.6% relative to the actual fracture height. This study provides a new perspective on real-time fracture monitoring. The response patterns of fiber-induced strain due to fractures can help us better understand and assess the dynamic fracture behavior, offering significant value for the optimization of oilfield development and fracture diagnostic techniques. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-06-01 DOI: 10.1016/j.jrmge.2024.07.011 ISSN: 1674-7755

Soil nitrogen-hydrolyzing enzymes catalyzes a key rate-limiting step in regulating the circulation of soil nutrient elements. The response of soil nitrogen (N)-hydrolyzing enzyme activities to environmental changes has been investigated in different geographic scales or ecosystems. Global warming has increased the frequency of soil freeze-thaw (FT) events, resulting in drastic changes in soil enzyme activities. Clarifying the changes in soil N-hydrolyzing enzymes under freeze-thaw conditions is essential for improving the N cycling and utilization efficiency in soil. However, how soil N-hydrolyzing enzymes respond to FT remains unclear. This study was aimed to analyze the influence of FT on soil N-hydrolyzing enzyme activity in Mollisols. The results showed that soil physicochemical properties and enzyme activities were changed after freeze-thaw events, and freeze-thaw temperature (FTF) had a greater impact on these properties than the number of freeze-thaw cycles (FTC). Correlation analysis showed that total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP) and pH were the major factors affecting enzyme activities in FT events. Soil N-hydrolyzing enzyme activity was mainly regulated by environmental factors, which can directly and indirectly affect the soil enzyme activity. In the soil ecosystem, pH, TOC, TN and TP were important factors in counteracting damage to enzyme activity from FT effects and a suitable environment and adequate nutrients can limit damage to enzymes from FT events. The findings will better predictions the changing patterns of climate change on soil N-hydrolyzing enzyme activity.

期刊论文 2025-05-30 DOI: 10.1038/s41598-025-98879-z ISSN: 2045-2322

The quest for clean, renewable energy resources has given a global rise in offshore wind turbine (OWT) construction. As OWTs are more exposed to harsh environmental conditions, the dynamic behavior of OWTs with jacket support structures under critical loading scenarios is crucial yet least understood, which becomes more convoluted with the consideration of soil-structure interaction (SSI) effects. In addition, the seismic characteristics of such systems heavily depend on the excitation characteristics like frequency content, a feature that is still ambiguous. This research aims to examine the influence of seismic frequency contents on the dynamic characteristics and damage modes of jacket-supported OWT systems including SSI effects. The numerical model is established and validated based on a previous study, which ensures the accuracy of the numerical modeling framework. Upon validation, extensive numerical analyses are performed under earthquakes with varying frequency contents. Results reveal the relationship among the ground motion frequency, SSI, and the dynamic and damage behavior of jacket-supported OWTs, offering important insights for the improved seismic design and analysis of jacket-supported OWTs.

期刊论文 2025-05-30 DOI: 10.1016/j.oceaneng.2025.120953 ISSN: 0029-8018

The degradation of subarctic peatland ecosystems under climate change impacts surrounding landscapes, carbon balance, and biogeochemical cycles. To assess these ecosystems' responses to climate change, it is essential to consider not only the active-layer thickness but also its thermo-hydraulic conditions. Ground-penetrating radar is one of the leading methods for studying the active layer, and this paper proposes systematically investigating its potential to determine the thermal properties of the active layer. Collected experimental data confirm temperature hysteresis in peat linked to changes in water and ice content, which GPR may detect. Using palsa mires of the Kola Peninsula (NW Russia) as a case study, we analyze relationships between peat parameters in the active layer and search for thermal gradient responses in GPR signal attributes. The results reveal that frequency-dependent GPR attributes can delineate thermal intervals of +/- 1 degrees C through disperse waveguides. However, further verification is needed to clarify the conditions under which GPR can reliably detect temperature variations in peat, considering factors such as moisture content and peat structure. In conclusion, our study discusses the potential of GPR for remotely monitoring freeze-thaw processes and moisture distribution in frozen peatlands and its role as a valuable tool for studying peat thermal properties in terms of permafrost stability prediction.

期刊论文 2025-05-22 DOI: 10.3390/rs17111805

This article experimentally evaluates the influence of shearing rate on the monotonic and cyclic response of isotropically-consolidated samples of Malaysian kaolin. On the one hand, a series of undrained monotonic triaxial tests were performed with varying shearing displacement rate. On the other hand, undrained cyclic triaxial tests were conducted considering different deviatoric stress amplitudes and loading frequencies. The well-known soil rate-dependency under monotonic loading was confirmed up to a displacement rate threshold. The experimental results under cyclic loading suggest that for the given loading frequency, the variation of the deviatoric stress amplitude remarkably influences the strains and pore water pressure accumulation rates. In addition, the results suggest that depending on the loading frequency different shapes of mobilized effective stress loops are obtained. Larger loading frequencies lead to banana-shaped effective stress loops, while smaller frequencies reproduce eight-shaped effective stress loops. Furthermore, higher loading frequencies result in a larger number of cycles required to reach failure conditions. The reasons for the observed differences in the behavior are thoroughly analyzed and discussed.

期刊论文 2025-05-16 DOI: 10.1680/jgeot.23.00310 ISSN: 0016-8505

As the monopile supported offshore wind turbine (OWT) is a dynamic sensitive structure, one of the major challenges in its design is the assessment of the natural frequency to avoid resonance during the lifetime. Since the characteristics of OWTs under dynamic loading and their long-term behavior are not fully understood, to study their natural frequency considering soil-monopile interaction, a series of scaled model tests in sand were performed. The first part was about the initial resonant frequency subjected to different forcing amplitudes and the second part was about the change of the natural frequency under long-term horizontal cyclic loadings. Based on the test results, the effects of pile-soil interaction, related to the loading amplitude, embedment depth, soil density, and cyclic numbers, on the natural frequency of OWTs are presented by a non-dimensional group based on the explanation of the governing mechanism. As the soil nonlinearity leads to a degradation in the natural frequency of monopile supported OWTs in the sand and the cyclic loading results in an increase, the choice of the natural frequency closer to the upper limit of the 1P band is suggested in practice based on the tradeoff of the two above effects.

期刊论文 2025-05-15 DOI: 10.1016/j.oceaneng.2025.120913 ISSN: 0029-8018

Coal mining has significant economic and environmental implications. The extraction and combustion of coal release harmful chemicals and dust, impacting air, soil, and water quality, as well as natural habitats and human health. This study aimed to investigate the association between global DNA methylation, DNA damage biomarkers (including telomere length), and inorganic element concentrations in the blood of individuals exposed to coal mining dust. Additionally, polycyclic aromatic hydrocarbons were analyzed. The study included 150 individuals exposed to coal mining and 120 unexposed controls. Results showed significantly higher global DNA hypermethylation in the exposed group compared to controls. Moreover, in the exposed group, micronucleus frequency and age showed a significant correlation with global DNA hypermethylation. Blood levels of inorganic elements, including titanium, phosphorus, sodium, aluminum, iron, sulfur, copper, chromium, zinc, chlorine, calcium, and potassium, were potentially associated with DNA methylation and oxidative damage, as indicated by comet assay results. Furthermore, exposure to polycyclic aromatic hydrocarbons such as fluoranthene, naphthalene, and anthracene, emitted in mining particulate matter, may contribute to these effects. These findings highlight the complex interplay between genetic instability, global DNA hypermethylation, and environmental exposure in coal mining areas, emphasizing the urgent need for effective mitigation strategies.

期刊论文 2025-05-07 DOI: 10.1093/mutage/geaf010 ISSN: 0267-8357
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 末页
  • 跳转
当前展示1-10条  共68条,7页