共检索到 11

Uneven displacement of permafrost has become a major concern in cold regions, particularly under repeated freezing-thawing cycles. This issue poses a significant geohazard, jeopardizing the safety of transportation infrastructure. Statistical analyses of thermal penetration suggest that the problem is likely to intensify as water erosion expands, with increasing occurrences of uneven displacement. To tackle the challenges related to mechanical behavior under cyclic loading, the New Geocell Soil System has been implemented to mitigate hydrothermal effects. Assessment results indicate that the New Geocell Soil System is stable and effective, offering advantages in controlling weak zones on connecting slopes and reducing uneven solar radiation. Consequently, the New Geocell Soil System provides valuable insights into the quality of embankments and ensures operational safety by maintaining displacement at an even level below 1.0 mm. The thermal gradient is positive, with displacement below 6 degrees C/m, serving as a framework for understanding the stability of the subgrade. This system also enhances stress and release the sealing phenomenon.

期刊论文 2025-11-01 DOI: 10.1016/j.coldregions.2025.104564 ISSN: 0165-232X

The physicochemical combination method (PCCM) is a new integrated method for treating and reusing large volumes of slurry-like mud (MS). To study the effects of freezing-thawing (FT) cycles on the mechanical properties of MS treated by the PCCM, unconfined compression tests (UCTs) and microstructural tests are both conducted on PCCM-treated MS samples with different combinations of FT cycles, initial water contents (wei), and cementitious binder contents (wc). The experimental results indicate that the unconfined compressive strength (UCS) and the elastic modulus (E) of PCCM-treated MS decrease exponentially when the FT cycles increase from 0 to 15. For the PCCM-treated MS samples subjected to 15 FT cycles, the reduction degree of their strength, as well as deformation resistance, is more sensitive to the variation of wc compared to that of wei. Meanwhile, the UCS and E of PCCM-treated MS samples are higher than those of the corresponding MS samples treated by the conventional cement solidification method (CCSM). The superior resistance to FT cycles of PCCM-treated MS is attributed to the presence of APAM, which not only facilitates the aggregation of soil particles but also enhances the dewatering efficiency of MS. Notably, the E/UCS value of CCSM-treated MS is 1.25 times larger than that of PCCM-treated MS, indicating the application of PCCM can significantly enhance the toughness of the treated MS.

期刊论文 2025-06-01 DOI: 10.1007/s10064-025-04322-y ISSN: 1435-9529

The waste tire rubber may be incorporated with the cement soil to improve its frost resistance. However, it remains a significant challenge to optimise the rubber content between its mechanical strength and durability under freeze-thaw conditions. In this study, the macroscopic mechanical properties of ordinary cement soil and rubber-cement soil (with particle sizes of 30 and 60 mesh) were explored under different freeze-thaw cycles (0, 3, 6, 9, 15) by taking the wave propagation and unconfined compressive strength (UCS) tests. Subsequently, a series of scanning electron microscope (SEM) and X-ray diffraction (XRD) tests were conducted to analyse the microstructure of the specimens, further clarifying the freeze-thaw damage mechanisms in rubber-cement soil. The results show that freeze-thaw cycles cause irreversible internal damage to the cement soil, leading to continuous reductions in both wave velocity and UCS. After 15 freeze-thaw cycles, the wave velocity loss rates are 95%, 72.2%, and 89.7% for ordinary cement soil, cement soil mixed with 30-mesh and 60-mesh rubber particles, respectively. The corresponding UCS loss rates are 95.4%, 82.7%, and 89.2%, respectively. The above results suggest that 30-mesh rubber-cement soil exhibits superior frost resistance. From a microstructural perspective, the rubber particles delay and inhibit the propagation of frost heaving cracks, forming a denser spatial structure for calcium silicate hydrates (C-S-H) gel, thereby improving the freeze-thaw resistance. By integrating macroscopic mechanical testing and microstructural analysis, this study reveals the mechanical properties and damage mechanism of rubber-cement soil under freeze-thaw conditions, providing valuable insights for its engineering applications.

期刊论文 2025-05-16 DOI: 10.1080/09593330.2025.2505802 ISSN: 0959-3330

Binders can enhance soil properties and improve their suitability as subgrade fillers; however, the cementing effect and strength properties of solidified soil are highly susceptible to external environmental factors. This study evaluated the strength and durability of solidified sludge soil (PSCS) with varying binder (PSC) contents through unconfined compressive strength (UCS) tests combined with drying-wetting (D-W) and freezing-thawing (F-T) cycles, and identified the optimal binder content for performance enhancement. Additionally, mercury intrusion porosimetry (MIP) tests were conducted to analyze pore structure changes and explore the synergistic effects between hydration reactions and moisture variations induced by D-W/F-T cycles. Results indicate that binder content > 15 % significantly enhances PSCS strength and durability, with 15 % content (PSCS15) demonstrating the best economic advantage. During D-W/F-T cycles, the synergy between hydration reactions and moisture variations affects the pore structure, resulting in strength changes. For example, during D-W cycles, moisture movement causes the collapse of pores > 30 mu m, while hydration products fill the pores, decreasing the porosity of 5-30 mu m. Subsequently, moisture variations weaken the cementation effect, leading to a increase in the porosity of 5-30 mu m. This process causes the strength to fluctuate, showing a first decrease, followed by an increase, and then another decrease, with an overall reduction of 21.6 %. During the drying stage of D-W cycles, moisture evaporation inhibits hydration reactions in soil. In contrast, during F-T cycles, moisture remains in different physical states (e.g., solid ice crystals and liquid water). These moisture variations causing the collapse of pores >30 mu m, while hydration products fill the larger pores, increasing the porosity of 1-10 mu m. The strength first decreases and then increases, with an overall increase of 38.7 %. Furthermore, this study demonstrates that until the hydration process is completed, D-W cycles have a more significant negative impact on PSCS compared to F-T cycles.

期刊论文 2025-03-01 DOI: 10.1016/j.trgeo.2025.101518 ISSN: 2214-3912

Insight into the growth of internal microstructure and surface morphology is critical for understanding the robustness of red sandstone artifacts in frigid environments. Since freeze-thaw (F-T) cycles can exacerbate the surface deterioration of water-bearing sandstone, a series of investigation on fresh and weathered water-bearing sandstone samples with different F-T cycle numbers (i.e. 0-100) is performed in this study, including three-dimensional (3D) laser scanning, scanning electron microscope (SEM) and computed tomography (CT) scanning tests, thermal property tests, Brazilian tests, and multi-field numerical simulations. Our results demonstrate that with increasing F-T cycles, the surface fractal dimension and specific surface area of red sandstone samples increase, and the pore size distribution inside rocks shifts from ultrananopores (10-100 nm) to micro-pores (0.1-100 mm) and ultramicropores (100 mm & thorn;). Spatially, the pores generated by the F-T cycles are more prominent near the surfaces of rock samples. Numerical simulation indicates that the uneven pore distribution leads to surface degradation. After 100 F-T cycles, the intergranular (IG) cement of the samples cracks, and the IG fractures are widened; eventually, due to the structural integrity weakening, the tensile strength is drastically reduced by over half. The thermal properties of the water-saturated sandstone can be improved during the F-T cycles, and a strong coefficient of determination of 0.98 exists between the fractal dimensions of sandstone surface and the tensile strength. When assessing the mechanical properties of stone artifacts under F-T cycles, the morphological damage of red sandstone should first be investigated when in situ sampling is inappropriate. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-02-01 DOI: 10.1016/j.jrmge.2023.09.022 ISSN: 1674-7755

In the current study, the durability of a clayey-sand stabilized with copper-slag (CS)-based geopolymer and alkaline activator solution (AAS) is investigated in freezing-thawing (F-T) cycles. For this purpose, tests including Atterberg limits, pH, standard Proctor compaction, unconfined compressive strength (UCS), accumulated loss of mass (ALM), swell and shrinkage, ultrasonic P-wave velocity, the toxicity characteristic leaching procedure (TCLP), and scanning electron microscopy (SEM) analysis were conducted. Various contents of CS (i.e., 0, 10%, and 15%) and 8 and 11 M NaOH were assessed in 0, 1, 3, 6, 9, and 12 cycles. The AAS contained 70% of Na2SiO3 and 30% of NaOH. Also, the weight ratio of CS to ASS was 1 (CS/ASS = 1). According to the TCLP test, the CS-based geopolymer stabilized samples have no environmental hazards. The results illustrated that the strength and stiffness of untreated soil increased with an increase in F-T cycles until cycle 3. For samples with 11 M NaOH concentration, loss of strength and stiffness were observed due to F-T cycles. Furthermore, the sample with 8 M NaOH showed hybrid behavior (i.e., an increase in strength and stiffness until cycle 3), similar to that of untreated soil, and then declined until cycle 9, similar to soil treated with 11 M NaOH. Based on the microstructural analysis, higher microcracks were observed in the 8 M sample compared with the 11 M sample due to soft-strain behavior. Furthermore, a higher microcrack formation resulted in a higher potential for swell mass and volume change.

期刊论文 2025-01-01 DOI: 10.1007/s42947-023-00341-8 ISSN: 1996-6814

Foam concrete is characterized by lightweight, self-compacting and high flowability, thereby widely used as a subgrade bed filler. High-speed railway subgrades usually experience inhomogeneous deformation due to the occurrence of freezing-thawing cycles in seasonally frozen soil areas. It is essential to study the deformation behavior of foam concrete under the coupling effect of freezing-thawing cycles and dynamic loading. In this paper, dynamic triaxial tests were performed to study the accumulative deformation of the foam concrete under different numbers of freezing-thawing cycles, freezing temperatures, amplitudes and frequencies of dynamic loading. Based on the scanning electron microscopy (SEM) tests, the characteristics of the pore structure were analyzed quantitatively by introducing the directional distribution frequency and fractal dimension. The research results illustrate that the damage caused by freezing-thawing progress to the pore structure results in more significant deformation of the foam concrete subjected to dynamic loading. There exists an accumulative damage effect induced by the coupling action of long-term dynamic loading and freezing-thawing progress on the microstructure and mechanical properties of foam concrete. The development of the fractal dimension agrees with that of the accumulative strain, indicating a close connection between the microstructure and the dynamic behavior of foam concrete. The findings concluded in this study contribute to a sufficient understanding of the performance of foam concrete used as high-speed railway subgrade fillers subjected to seasonal freezing.

期刊论文 2024-07-01 DOI: 10.1617/s11527-024-02409-8 ISSN: 1359-5997

Introduction: Permafrost and seasonally frozen soil are widely distributed on the Qinghai-Tibetan Plateau, and the freezing-thawing cycle can lead to frequent phase changes in soil water, which can have important impacts on ecosystems.Methods: To understand the process of soil freezing-thawing and to lay the foundation for grassland ecosystems to cope with complex climate change, this study analyzed and investigated the hydrothermal data of Xainza Station on the Northern Tibet from November 2019 to October 2021.Results and Discussion: The results showed that the fluctuation of soil temperature showed a cyclical variation similar to a sine (cosine) curve; the deep soil temperature change was not as drastic as that of the shallow soil, and the shallow soil had the largest monthly mean temperature in September and the smallest monthly mean temperature in January. The soil water content curve was U-shaped; with increased soil depth, the maximum and minimum values of soil water content had a certain lag compared to that of the shallow soil. The daily freezing-thawing of the soil lasted 179 and 198 days and the freezing-thawing process can be roughly divided into the initial freezing period (November), the stable freezing period (December-early February), the early ablation period (mid-February to March), and the later ablation period (March-end of April), except for the latter period when the average temperature of the soil increased with the increase in depth. The trend of water content change with depth at all stages of freezing-thawing was consistent, and negative soil temperature was one of the key factors affecting soil moisture. This study is important for further understanding of hydrothermal coupling and the mechanism of the soil freezing-thawing process.

期刊论文 2024-06-20 DOI: 10.3389/fenvs.2024.1411704

Sludge-cured lightweight soils have unique advantages in roadbed treatment due to their properties such as low density and high strength. Its long-term mechanical law based on the superposition of drying-wetting and freezing-thawing (D-W-F-T) is studied through creep experiment. The test results show that: with the increase of the number of D-W-F-T, the deformation of the soil gradually increases, and the deformation tends to be stable when it reaches a certain number of times; the stress-strain isochronous curves are obviously nonlinear in general; The long-term strength increases with the increase of density and confining pressure, and decreases with the increase of the number of D-W-F-T; by comparing the isochronous stress-strain curve cluster method and the steady state creep rate vs. The comparative analysis suggests that the steady state creep rate versus stress level curve method be used to determine the long term strength.

期刊论文 2024-03-15 DOI: 10.1080/19386362.2024.2355410 ISSN: 1938-6362

The freezing-thawing cycle is a basic feature of a frozen soil ecosystem, and it affects the growth of alpine vegetation both directly and indirectly. As the climate changes, the freezing-thawing mode, along with its impact on frozen soil ecosystems, also changes. In this research, the freezing-thawing cycle of the Nagqu River Basin in the Qinghai-Tibet Plateau was studied. Vegetation growth characteristics and microbial abundance were analyzed under different freezing-thawing modes. The direct and indirect effects of the freezing-thawing cycle mode on alpine vegetation in the Nagqu River Basin are presented, and the changing trends and hazards of the freezing-thawing cycle mode due to climate change are discussed. The results highlight two major findings. First, the freezing-thawing cycle in the Nagqu River Basin has a high-frequency mode (HFM) and a low-frequency mode (LFM). With the influence of climate change, the LFM is gradually shifting to the HFM. Second, the alpine vegetation biomass in the HFM is lower than that in the LFM. Frequent freezing-thawing cycles reduce root cell activity and can even lead to root cell death. On the other hand, frequent freezing-thawing cycles increase microbial (Bradyrhizobium, Mesorhizobium, and Pseudomonas) death, weaken symbiotic nitrogen fixation and the disease resistance of vegetation, accelerate soil nutrient loss, reduce the soil water holding capacity and soil moisture, and hinder root growth. This study provides a complete response mechanism of alpine vegetation to the freezing-thawing cycle frequency while providing a theoretical basis for studying the change direction and impact on the frozen soil ecosystem due to climate change.

期刊论文 2019-10-01 DOI: 10.3390/w11102122
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共11条,2页