共检索到 4

The deterioration of soft rocks caused by freeze-thaw (F-T) climatic cycles results in huge structural and financial loss for foundation systems placed on soft rocks prone to F-T actions. In this study, cementtreated sand (CTS) and natural soft shale were subjected to unconfined compression and splitting tensile strength tests for evaluation of unconfined compressive strength (UCS, qu), initial small-strain Young's modulus (Eo) using linear displacement transducers (LDT) up to a small strain of 0.001%, and secant elastic modulus (E50) using linear variable differential transducers (LVDTs) up to a large strain of 6% before and after reproduced laboratory weathering (RLW) cycles (-20 degrees C-110 degrees C). The results showed that eight F-T cycles caused a reduction in qu, E50 and Eo, which was 8.6, 15.1, and 14.5 times for the CTS, and 2.2, 3.5, and 5.3 times for the natural shale, respectively. The tensile strength of the CTS and natural rock samples exhibited a degradation of 5.4 times (after the 8th RLW cycle) and 2.7 times (after the 15th RLW cycle), respectively. Novel correlations have been developed to predict Eo (response) from the parameters quand E50 (predictors) using MATLAB software's curve fitter. The findings of this study will assist in the design of foundations in soft rocks subjected to freezing and thawing. The analysis of variance (ANOVA) indicated 95% confidence in data health for the design of retaining walls, building foundations, excavation in soft rock, large-diameter borehole stability, and transportation tunnels in rocks for an operational strain range of 0.1%-0.01% (using LVDT) and a reference strain of less than 0.001% (using LDT). (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-06-01 DOI: 10.1016/j.jrmge.2024.09.060 ISSN: 1674-7755

Microbially Induced Calcite Precipitation (MICP) is an eco-friendly method for improving sandy soils, relying on micro-organisms that require nitrogen and essential nutrients to induce carbonate mineral precipitation. Given the substantial annual generation of chicken manure (CM) and the associated challenges in its disposal resulting in environmental pollution, the nutrient-rich composted form of this waste material is proposed in this study as a supplementary additive (along with more costly industrial reagents, e.g., urea) to provide the necessary carbon and nitrogen for the MICP process. To this end, different CM contents (5 %, 10 %, and 15 %) along with various concentrations of cementation solution (1 M, 1.5 M, and 2 M) are employed in multiple improvement cycles to augment the efficiency of the MICP technique. Unconfined Compressive Strength (UCS), Ultrasonic Pulse Velocity (UPV), and Water Absorption (WA) tests are performed to assess the mechanical properties of the samples before and after exposure to freeze-thaw (F-T) cycles, while SEM, XRD, and FTIR analyses are carried out to delineate the formation of calcite within the porous structure of MICP-CM-treated sands. The findings suggest that an optimum percentage of CM (10 %) in the MICP process not only contributes to environmental conservation but also significantly enhances all the mechanical properties of bio-cemented sandy soils due to markedly improved bonding within their porous fabric. The results also show that although prolonged exposure to consecutive F-T cycles causes a reduction in strength and stiffness of enhanced MICP-treated soils, the mechanical properties of such geo-composites still remain within an acceptable range for optimal CM-enhanced biocemented mixtures, significantly superior to those of MICP-treated sands.

期刊论文 2024-12-01 DOI: 10.1016/j.rineng.2024.103540 ISSN: 2590-1230

Freeze-thaw (F-T) cycling poses a significant challenge in seasonally frozen zones, notably affecting the mechanical properties of soil, which is a critical consideration in subgrade engineering. Consequently, a series of unconfined compressive strength tests were conducted to evaluate the influence of various factors, including fiber content, fiber length, curing time, and F-T cycles on the unconfined compression strength (UCS) of fiber-reinforced cemented silty sand. In parallel, acoustic emission (AE) testing was conducted to assess the AE characteristic parameters (e.g., cumulative ring count, cumulative energy, energy, amplitude, RA, and AF) of the same material under F-T cycles, elucidating the progression of F-T-induced damage. The findings indicated that UCS initially increased and then declined as fiber content increased, with the optimal fiber content identified at 0.2%. UCS increased with prolonged curing time, while increases in fiber length and F-T cycles led to a reduction in UCS, which then stabilized after 6 to 10 cycles. Stable F-T cycles resulted in a strength loss of approximately 30% in fiber-reinforced cemented silty sand. Furthermore, AE characteristic parameters strongly correlated with the stages of damage. F-T damage was segmented into three stages using cumulative ring count and cumulative energy. An increase in cumulative ring count to 0.02 x 104 times and cumulative energy to 0.03 x 104 mvmu s marked the emergence of critical failure points. A sudden shift in AE amplitude indicated a transition in the damage stage, with an amplitude of 67 dB after 6 F-T cycles serving as an early warning of impending failure.

期刊论文 2024-09-19 DOI: 10.1038/s41598-024-71882-6 ISSN: 2045-2322

Diurnal freeze-thaw process occurs in the Lianghekou area in winter, which will affect the construction progress and quality of the project. In this paper, the compressibility of clay experiencing the freeze-thaw (F-T) cycles under different impacting factors was investigated. A series of unidirectional F-T tests were carried out in a closed system, and the compressibility tests were carried out for the same specimens underwent F-T cycles to study the compressibility along the specimen height. The experimental results demonstrate that the initial moisture content of specimens, the cooling temperature, and the number of F-T cycles affect the compressibility of specimens. As the cooling temperature decreases, the initial moisture content or the number of F-T cycles increases, the compressive strain of the affected zone of specimens increases under the same vertical pressure, while the confined compressive modulus decreases. The variation of the compressibility for the unaffected zone is different from that for the affected zone. For the same impacting factor, the compressive strain of the affected zone is greater than that of the unaffected zone, while the confined compressive modulus of the former is less than that of the latter. The change of compressibility is mainly affected by the characteristics of cryostructure and moisture migration of the specimen after F-T. This research may provide some guidance for the engineering construction process in winter in the seasonally frozen ground region.

期刊论文 2024-03-01 DOI: 10.1007/s10064-024-03572-6 ISSN: 1435-9529
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页