共检索到 2

To investigate the dynamic mechanical response and damage evolution behavior of ice-rich frozen clay, split Hopkinson pressure bar (SHPB) tests were performed on frozen clay specimens with initial moisture contents of 20%-1,000% under different temperatures, strain rates, and stress states. The stress-strain curves, dynamic strength, peak strain, absorbed energy density, failure mode, and failure progress were studied. The experimental results revealed the following: (1) in the radial-free state, the stress-strain curve of frozen clay with initial moisture contents ranging from 20% to 85% and 1,000% could be divided into three stages: elasticity, plasticity, and failure. In addition, a double peak phenomenon occurs in the stress-strain curves within the initial moisture content range of 120%-480%. (2) In the radial-free state, as the initial moisture content increased, the dynamic strength first increased to a maximum value, then decreased to a minimum value less than the dynamic strength of ice, and eventually increased marginally to the dynamic strength of ice. However, the variation in dynamic peak strain with initial moisture content followed a decrease-increase-decrease three-stage pattern. (3) In the passive confining pressure state, the initial moisture content of frozen soil determined its sensitivity to the confining pressure. (4) The high-speed camera test results indicated that the failure of the ice-rich frozen clay was mainly caused by tensile cracks. The degree of failure of the frozen clay specimens became more evident as the moisture content and strain rate increased. In the passive confining pressure state, the ice-rich frozen clay specimens remained intact except for a small amount of edge peeling.

期刊论文 2024-12-01 DOI: 10.1061/JCRGEI.CRENG-789 ISSN: 0887-381X

In the context of repositories for nuclear waste, understanding the behavior of gas migration through clayey rocks with inherent anisotropy is crucial for assessing the safety of geological disposal facilities. The primary mechanism for gas breakthrough is the opening of micro-fractures due to high gas pressure. This occurs at gas pressures lower than the combined strength of the rock and its minimum principal stress under external loading conditions. To investigate the mechanism of microscale mode-I ruptures, it is essential to incorporate a multiscale approach that includes subcritical microcracks in the modeling framework. In this contribution, we derive the model from microstructures that contain periodically distributed microcracks within a porous material. The damage evolution law is coupled with the macroscopic poroelastic system by employing the asymptotic homogenization method and considering the inherent hydro-mechanical (HM) anisotropy at the microscale. The resulting permeability change induced by fracture opening is implicitly integrated into the gas flow equation. Verification examples are presented to validate the developed model step by step. An analysis of local macroscopic response is undertaken to underscore the influence of factors such as strain rate, initial damage, and applied stress, on the gas migration process. Numerical examples of direct tension tests are used to demonstrate the model's efficacy in describing localized failure characteristics. Finally, the simulation results for preferential gas flow reveal the robustness of the two-scale model in explicitly depicting gas-induced fracturing in anisotropic clayey rocks. The model successfully captures the common behaviors observed in laboratory experiments, such as a sudden drop in gas injection pressure, rapid build-up of downstream gas pressure, and steady-state gas flow following gas breakthrough. O 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

期刊论文 2024-06-01 DOI: 10.1016/j.jrmge.2024.03.011 ISSN: 1674-7755
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页