During the excavation of large-scale rock slopes and deep hard rock engineering, the induced rapid unloading serves as the primary cause of rock mass deformation and failure. The essence of this phenomenon lies in the opening-shear failure process triggered by the normal stress unloading of fractured rock mass. In this study, we focus on local-scale rock fracture and conduct direct shear tests under different normal stress unloading rates on five types of non-persistent fractured hard rocks. The aim is to analyze the influence of normal stress unloading rates on the failure modes and shear mechanical characteristics of non-persistent fractured rocks. The results indicate that the normal unloading displacement decreases gradually with increasing normal stress unloading rate, while the influence of normal stress unloading rate on shear displacement is not significant. As the normal stress unloading rate increases, the rocks brittle failure process accelerates, and the degree of rocks damage decreases. Analysis of the stress state on rock fracture surfaces reveals that increasing the normal stress unloading rate enhances the compressive stress on rocks, leading to a transition in the failure mode from shear failure to tensile failure. A negative exponential strength formula was proposed, which effectively fits the relationship between failure normal stress and normal stress unloading rate. The findings enrich the theoretical foundation of unloading rock mechanics and provide theoretical support for disasters prevention and control in rock engineering excavations. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
The mineralogy and texture of granite have been found to have a pronounced effect on its mechanical behavior. However, the precise manner in which the texture of granite affects the shear behavior of fractures remains enigmatic. In this study, fine-grained granite (FG) and coarse-grained granite (CG) were used to create tensile fractures with surface roughness (i.e. joint roughness coefficient (JRC)) within the range of 5.48-8.34 and 12.68-16.5, respectively. The pre-fractured specimens were then subjected to direct shear tests under normal stresses of 1-30 MPa. The results reveal that shear strengths are smaller and stick-slip behaviors are more intense for FG fractures than for CG fractures, which is attributed to the different conditions of the shear surface constrained by the grain size. The smaller grain size in FG contributes to the smoother fracture surface and lower shear strength. The negative friction rate parameter a - b for both CG and FG fractures and the larger shear stiffness for FG than for CG fractures can account for the more intense stick-slip behaviors in FG fractures. The relative crack density for the post-shear CG fractures is greater than that of the FG fractures under the same normal stress, both of which decrease with the distance away from the shear surface following the power law. Moreover, the damage of CG fracture extends to a larger extent beneath the surface compared with the FG fracture. Our findings demonstrate that the grain size of the host rock exerts a significant influence on the fracture roughness, and thus should be incorporated into the assessment of fault slip behavior to better understand the role of mineralogy and texture in seismic activities. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
Development and production from fractured reservoirs require extensive knowledge about the reservoir structures and in situ stress regimes. For this, this paper investigates fractures and the parameters (aperture and density) through a combination of wellbore data and geomechanical laboratory testing in three separate wells in the Asmari reservoir, Zagros Belt, Iran. The Asmari reservoir (Oligo-Miocene) consists mainly of calcitic and dolomitic rocks in depths of 2000-3000 m. Based on the observation of features in several wellbores, the orientation and magnitude of the in situ stresses along with their influence on reservoir-scale geological structures and neotectonics were determined. The study identifies two regional tectonic fracture settings in the reservoir: one set associated with longitudinal and diagonal wrinkling, and the other related to faulting. The former, which is mainly of open fractures with a large aperture, is dominant and generally oriented in the N45 degrees-90 degrees W direction while the latter is obliquely oriented relative to the bedding and characterized by N45 degrees-90 degrees E. The largest aperture is found in open fractures that are longitudinal and developed in the dolomitic zones within a complex stress regime. Moreover, analysis of drilling-induced fractures (DIFs) and borehole breakouts (BBs) from the image logs revealed that the maximum horizontal stress (SHmax) orientation in these three wells is consistent with the NE-SW regional trend of the SHmax (maximum principal horizontal stress) in the Zagros Belt. Likewise, the stress magnitude obtained from geomechanical testing and poroelastic equations confirmed a variation in stress regime from normal to reverse, which changes in regard to active faults in the study area. Finally, a relationship between the development degree of open fractures and in situ stress regime was found. This means that in areas where the stress regime is complex and reverse, fractures would exhibit higher density, dip angle, and larger apertures. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
The Pohang Basin sustained the most extensive seismic damage in the history of instrumental recording in Korea due to the 2017 Mw 5.5 earthquake. The pattern of damage shows marked differences from a radial distribution, suggesting important contributions by local site effects. Our understanding of these site effects and their role in generating seismic damage within the study area remains incomplete, which indicates the need for a thorough exploration of subsurface information, including the thickness of soil to bedrock and basin geometry, in the Pohang Basin. We measured the depth to bedrock in the Pohang Basin using dense ambient noise measurements conducted at 698 sites. We propose a model of basin geometry based on depths and dominant frequencies derived from the horizontal-to-vertical spectral ratio (HVSR) of microtremor at 698 sites. Most microseismic measurements exhibit one or more clear HVSR peak(s), implying one or more strong impedance contrast(s), which are presumed to represent the interface between the basement and overlying basin-fill sediments at each measurement site. The ambient seismic noise induces resonance at frequencies as low as 0.32 Hz. The relationship between resonance frequency and bedrock depth was derived using data from 27 boreholes to convert the dominant frequencies measured at stations adjacent to the boreholes into corresponding depths to the strong impedance contrast. The relationship was then applied to the dominant frequencies to estimate the depth to bedrock over the whole study area. Maps of resonance frequency and the corresponding depth to bedrock for the study area show that the greatest depths to bedrock are in the coastal area. The maps also reveal lower fundamental frequencies in the area west of the Gokgang Fault. The results indicate a more complex basin structure than previously proposed based on a limited number of direct borehole observations and surface geology. The maps and associated profiles across different parts of the study area show pronounced changes in bedrock depth near inferred blind faults proposed in previous studies, suggesting that maps of bedrock depth based on the HVSR method can be used to infer previously unknown features, including concealed or blind faults that are not observed at the surface.