共检索到 19

In this study, impact compression tests on low-temperature concrete were conducted using a split Hopkinson pressure bar. The impacts of low temperatures on the strength, fractal, and energy characteristics of concrete were analyzed. The damage evolution mechanism of the microcrack density was discussed based on microscopic damage theory and microscopic tests. The results demonstrated that the impact fractal dimension and energy dissipation density of low-temperature concrete were positively correlated with the strain rate. The strain rate sensitivity of the impact fractal dimension was significantly affected by low temperature at low strain rates; however, low temperature had little effect at high strain rates. The pore water transformed into ice at negative temperatures, the fracture energy of the concrete increased, and the energy dissipation density increased. More than 50 % of the capillary and free water inside the concrete was frozen at -10 degrees C; approximately 30 % of the capillary and free water and 65 % of bound water did not freeze when the temperature was -30 degrees C. The macropores did not collapse under the action of ice filling at high strain rates; however, microcracks were generated around them. With a decreasing temperature, the threshold stress for microcrack propagation increased, crack propagation required more energy, and the microcrack density decreased.

期刊论文 2025-07-01 DOI: 10.1016/j.coldregions.2025.104493 ISSN: 0165-232X

To investigate the effects of the maximum principal stress direction (theta) and cross- shape on the failure characteristics of sandstone, true-triaxial compression experiments were conducted using cubic samples with rectangular, circular, and D-shaped holes. As theta increases from 0 degrees to 60 degrees in the rectangular hole, the left failure location shifts from the left corner to the left sidewall, the left corner, and then the floor, while the right failure location shifts from the right corner to the right sidewall, right roof corner, and then the roof. Furthermore, the initial failure vertical stress first decreases and then increases. In comparison, the failure severity in the rectangular hole decreases for various theta values as 30 degrees > 45 degrees > 60 degrees > 0 degrees. With increasing theta, the fractal dimension (D) of rock slices first increases and then decreases. For the rectangular and D-shaped holes, when theta = 0 degrees, 30 degrees, and 90 degrees, D for the rectangular hole is less than that of the D-shaped hole. When theta = 45 degrees and 60 degrees, D for the rectangular hole is greater than that of the D-shaped hole. Theoretical analysis indicates that the stress concentration at the rectangular and D-shaped corners is greater than the other areas. The failure location rotates with the rotation of theta, and the failure occurs on the side with a high concentration of compressive stress, while the side with the tensile and compressive stresses remains relatively stable. Therefore, the fundamental reason for the rotation of failure location is the rotation of stress concentration, and the external influencing factor is the rotation of theta. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-04-01 DOI: 10.1016/j.jrmge.2024.10.003 ISSN: 1674-7755

The relationships between soil aggregates, aggregate-associated carbon (C), and soil compaction indices in pomegranate orchards of varying ages (0-30 years) in Assiut, Egypt, were investigated. Soil bulk density (Bd) and organic carbon (OC) content increased with orchard age in both the surface (0.00-0.20 m) and subsurface (0.20-0.40 m) layers 0.20-0.40 m). The percentage of macroaggregates (R-0.25) and their OC content in the aggregate fraction > 0.250 mm increased as the pomegranate orchard ages increased in the surface layer (0.00-0.20 m). Older pomegranate orchards show improved soil structure, indicated by higher mean weight diameter (MWD) and geometric mean diameter (GMD), alongside reduced fractal dimension (D) and erodibility (K). As orchard ages increased, maximum bulk density (BMax) decreased due to an increase in OC, while the degree of compactness (DC) increased, reaching a maximum at both soil layers for the 30 Y orchards. Soil organic carbon and aggregate-associated C significantly influenced BMax, which led to reducing the soil compaction risk. Multivariate analyses identified the >2 mm aggregate fraction as the most critical factor influencing the DC, soil compaction, and K indices in pomegranate orchards. The OC content in the >2 mm aggregates negatively correlated with BMax, DC, and K but was positively associated with MWD and GMD. Moreover, DC and Bd decreased with higher proportions of >2 mm aggregates, whereas DC increased with a higher fraction of 2-0.250 mm aggregation. These findings highlight the role of aggregate size fractions and their associated C in enhancing soil structure stability, mitigating compaction, and reducing erosion risks in pomegranate orchards.

期刊论文 2025-03-04 DOI: 10.3390/soilsystems9010020

The time-dependent deformation behavior of silty mudstone brings pronounced difficulties for the construction and maintenance of slope engineering, which has attracted much attention. This study examines the creep characteristics of silty mudstone through multistaged loading tests and studies the creep-induced microstructural evolution using Scanning Electron Microscopy (SEM). To mitigate the variability caused by natural defects in the rock, similar material specimens were prepared to substitute silty mudstone for experiments. The results demonstrate that creep strain escalates stepwise with stress level, with the magnitude of each increment being contingent upon the applied confining pressure (sigma 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma _{3}$\end{document}). The strain rate undergoes three phases including attenuation, stabilization, and acceleration. Cumulative strain correlates positively with sigma 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma _{3}$\end{document}, while the initial creep rate declines before slightly increasing. Creep failure predominantly manifests in a shear pattern, with sigma 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma _{3}$\end{document} controlling the development of fractures in terms of their length, number, and angle. SEM analysis reveals that increased sigma 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma _{3}$\end{document} facilitates the expansion of transgranular cracks, displaying a coupled ductile-brittle fracture mode. Furthermore, sigma 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma _{3}$\end{document} variably affects the micropore morphology (pore size, area, roughness, and regularity), with the differences in pore structures under various sigma 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma _{3}$\end{document} being distinguished by the fractal dimension. Also, the fractal dimension is positively correlated with porosity, which can be quantitatively characterized using a nonlinear logarithmic function. The interaction between particles and cement, coupled with the development of cracks and pores, is identified as the primary mechanism of structural failure during the creep process.

期刊论文 2025-03-01 DOI: 10.1007/s11043-024-09742-z ISSN: 1385-2000

Insight into the growth of internal microstructure and surface morphology is critical for understanding the robustness of red sandstone artifacts in frigid environments. Since freeze-thaw (F-T) cycles can exacerbate the surface deterioration of water-bearing sandstone, a series of investigation on fresh and weathered water-bearing sandstone samples with different F-T cycle numbers (i.e. 0-100) is performed in this study, including three-dimensional (3D) laser scanning, scanning electron microscope (SEM) and computed tomography (CT) scanning tests, thermal property tests, Brazilian tests, and multi-field numerical simulations. Our results demonstrate that with increasing F-T cycles, the surface fractal dimension and specific surface area of red sandstone samples increase, and the pore size distribution inside rocks shifts from ultrananopores (10-100 nm) to micro-pores (0.1-100 mm) and ultramicropores (100 mm & thorn;). Spatially, the pores generated by the F-T cycles are more prominent near the surfaces of rock samples. Numerical simulation indicates that the uneven pore distribution leads to surface degradation. After 100 F-T cycles, the intergranular (IG) cement of the samples cracks, and the IG fractures are widened; eventually, due to the structural integrity weakening, the tensile strength is drastically reduced by over half. The thermal properties of the water-saturated sandstone can be improved during the F-T cycles, and a strong coefficient of determination of 0.98 exists between the fractal dimensions of sandstone surface and the tensile strength. When assessing the mechanical properties of stone artifacts under F-T cycles, the morphological damage of red sandstone should first be investigated when in situ sampling is inappropriate. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-02-01 DOI: 10.1016/j.jrmge.2023.09.022 ISSN: 1674-7755

In order to reveal the intrinsic mechanism of the mechanical properties of lime-treated sandy soil from a microscopic perspective, triaxial tests were conducted to analyze the macroscopic mechanical characteristics of sandy soil with different lime contents (0%, 5%, 8%, and 12%). The changes in the microstructure of the lime-treated sandy soil were studied through scanning electron microscopy, energy-dispersive spectroscopy, and mercury intrusion tests, combined with fractal theory for quantitative characterization. The results indicate that the stress-strain curve of lime-treated sandy soil can be divided into four stages: linear elastic, non-linear, failure, and residual strength. With the increase in lime content, the peak stress and cohesion first increase and then decrease, while the internal friction angle first decreases and then increases, suggesting the presence of an optimal threshold for lime content between 5% and 12%. The failure mode transitions from diagonal shear failure to bulging failure, significantly enhancing stability; both the fitted Mohr-Coulomb and Drucker-Prager failure criteria effectively reflect the failure patterns of the specimens in principal stress space. The results based on the three fractal dimensions demonstrate that lime-treated sandy soil exhibits clear fractal characteristics, with the highest fractal dimension value at a lime content of 8%, corresponding to the highest overall strength. In addition, the fractal dimension shows a binomial relationship with pore characteristic parameters and shear strength parameters; it can effectively characterize the complexity of the microstructure and accurately predict changes in shear strength parameters.

期刊论文 2025-02-01 DOI: 10.3390/fractalfract9020064

Subgrade soil undergoes freezing in winter and thawing in summer in seasonal frost areas, which severely impacts the engineering performance of the subgrade soil. In order to enhance the frost resistance of subgrade while mitigating the environmental impact of incinerating industrial solid waste, rubber crumb was added to cementsoil in this study. The static triaxial and mercury intrusion porosimetry tests were conducted on freeze-thawed cement-soil and rubberized cement-soil. The effects of the number of freeze-thaw cycle and confining pressure on peak strength and initial elastic modulus were investigated. The pore size distribution, porosity, and fractal dimension under various numbers of freeze-thaw cycle were obtained based on the MIP test results. The damage parameter of the specimens was determined using the fractal dimension. A constitutive model with damage parameter of rubberized cement-soil was established. The results showed that the pore size distribution of the specimens deteriorated after the whole freeze-thaw cycles, with increases observed in macropore proportion, porosity, and damage parameters, while peak strength and fractal dimension decreased. The macropore proportion of cement-soil and rubberized cement-soil increased by 14.9% and 2.0%, respectively. The incorporation of rubber particles suppressed the development of pores and cracks and enhanced the frost resistance of the specimens. The damage parameter of rubberized cement-soil decreased by only 0.0186 by the end of 12 of freezethaw cycle. The established constitutive model was suitable for characterizing the stress-strain behavior of rubberized cement-soil. The findings facilitate the construction and design of subgrade engineering in seasonal frost areas, contributing to the development of sustainable, durable subgrade solutions and reducing the environmental impact of waste rubber tires.

期刊论文 2025-01-10 DOI: 10.1016/j.conbuildmat.2024.139524 ISSN: 0950-0618

In this study, a novel microwave-water cooling-assisted mechanical rock breakage method was proposed to address the issues of severe tool wear at elevated temperatures, poor rock microwave absorption, and excessive microwave energy consumption. The investigation object was sandstone, which was irradiated at 4 kW microwave power for 60 s, 180 s, 300 s, and 420 s, followed by air and water cooling. Subsequently, uniaxial compression, Brazilian tension, and fracture tests were conducted. The evolution of damage in sandstone was measured using active and passive nondestructive acoustic detection methods. The roughness of the fracture surfaces of the specimens was quantified using the box-counting method. The damage mechanisms of microwave heating and water cooling on sandstone were discussed from both macroscopic and microscopic perspectives. The experimental results demonstrated that as the duration of the microwave irradiation increased, the P-wave velocity, uniaxial compressive strength (UCS), elastic modulus (E), tensile strength, and fracture toughness of sandstone exhibited various degrees of weakness and were further weakened by water cooling. Furthermore, an increase in the microwave irradiation duration enhanced the damaging effect of water cooling. The P-wave velocity of the sandstone was proportional to the mechanical parameters. Microwave heating and water cooling weakened the brittleness of the sandstone to a certain extent. The fractal dimension of the fracture surface was correlated with the duration of microwave heating, and the water-cooling treatment resulted in a rougher fracture surface. An analysis of the instantaneous cutting rate revealed that water cooling can substantially enhance the efficiency of microwave-assisted rock breakage. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

期刊论文 2025-01-01 DOI: 10.1016/j.jrmge.2024.03.034 ISSN: 1674-7755

Fiber-reinforced polymer (FRP) wrapping is a potential technique for coal pillar reinforcement. In this study, an acoustic emission (AE) technique was employed to monitor coal specimens with carbon FRP (CFRP) jackets during uniaxial compression, which addressed the inability to observe the cracks inside the FRP-reinforced coal pillars by conventional field inspection techniques. The spatiotemporal fractal evolution of the cumulated AE events during loading was investigated based on fractal theory. The results indicated that the AE response and fractal features of the coal specimens were closely related to their damage evolution, with CFRP exerting a significant influence. In particular, during the unstable crack development stage, the evolutionary patterns of the AE count and energy curves of the CFRPconfined specimens underwent a transformation from the slight shock-major shock type to the slight shock-sub-major shock-slight shock-major shock type, in contrast to the unconfined coal specimens. The AE b-values decreased to a minimum and then increased marginally. The AE spatial fractal dimension increased rapidly, whereas the AE temporal fractal dimension fluctuated significantly during the accumulation and release of strain energy. Ultimately, based on the AE count and AE energy evolution, a damage factor was proposed for the coal samples with CFRP jackets. Furthermore, a damage constitutive model was established, considering the CFRP jacket and the compaction characteristics of the coal. This model provides an effective description of the stress-strain relationship of coal specimens with CFRP jackets. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2024-12-01 DOI: 10.1016/j.jrmge.2024.04.022 ISSN: 1674-7755

Spherical glass beads weaken the influences of particle morphology, surface properties, and microscopic fabric on shear strength, which is significant for revealing the relationship between macroscopic particle friction mechanisms and the particle size distribution of sand. This paper explores the shear mechanical properties of glass beads with different particle size ratios under different confining pressures. It obtains the particle size ratio and fractal dimension D through an optimal mechanical response. Simultaneously, we explore the range of the fractal dimension D under well-graded conditions. The test results show that the strain-softening degree of R-s is more obvious under a highly effective confining pressure, and the strain-softening degree of R-s can reach 0.669 when the average particle size (d) over bar is 0.5 mm. The changes in the normalized modulus ratio E-u/E-u50 indicate that the particle ratio and arrangement are the fundamental reasons for the different macroscopic shear behaviors of particles. The range of the peak effective internal friction angle phi is 23 degrees similar to 35 degrees, and it first increases and then decreases with the increase in the effective confining pressure. As the average particle size increases, the peak stress ratio M-FL and the peak effective internal friction angle phi first increase and then decrease, and both can be expressed using the Gaussian function. The range of the fractal dimension D for well-graded particles is 1.873 to 2.612, and the corresponding average particle size (d) over bar ranges from 0.433 to 0.598. Under the optimal mechanical properties of glass beads, the particle size ratio of 0.25 mm to 0.75 mm is 23:27, and the fractal dimension D is 2.368. The study results provide a reference for exploring friction mechanics mechanisms and the optimal particle size distributions of isotropic sand.

期刊论文 2024-10-01 DOI: 10.3390/fractalfract8100578
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共19条,2页