共检索到 4

Cemented sandy gravel is often used to enhance the foundation soil of engineering projects. This paper presents results of triaxial tests on cemented sandy gravel specimens. We compared 8 cemented specimens and 4 uncemented specimens. The strength, dilatancy, and stiffness behavior of both cemented and uncemented specimens are compared. The strength of cemented specimens is significantly greater than that of uncemented specimens, and the cemented specimens demonstrate pronounced expansion characteristics. The peak friction angle of the cemented specimen shows a linear relationship with the confining pressure: psi = 68.1-18.2lg(sigma 3/pa). To quantify the structural strength of the cemented specimens, a structural damage parameter is introduced based on the differences in mechanical properties between the two materials. The structural damage parameter first increases and then decreases as shearing progresses, and a hump curve function is used to describe this behavior. In the frame of the generalized plasticity, a novel elastoplastic model is established, considering the structural parameter as a factor of the plastic modulus, loading vectors and plastic flow direction vectors. The calculated values fit well with the experimental results. The model can reflect the characteristics of cemented sandy gravel, in terms of stress softening, residual strength, and volumetric dilation. Finally, the model is used to evaluate the deformation of a sluice dam foundation after being enhanced with cemented sandy gravel. The results show that after treatment, both the settlement of the gate floor and the shear deformation of the waterstops can be reduced by more than 10%.

期刊论文 2025-05-01 DOI: 10.1007/s10064-025-04234-x ISSN: 1435-9529

The highway network is densely distributed in the southeast coast of China. Highway subgrades passing through soft soil areas often produce large settlements, resulting in pavement cracking, bridgehead jumping, and other diseases. In order to study the effect of three trenchless treatment technologies of oblique jet grouting pile (JGP), lateral displacement limiting pile (LDLP), and load reducing pipe (LRP), centrifugal model tests were carried out under three treated conditions and without treatment. Based on the data of pore water pressure and settlement in the range of the half embankment model and outside the embankment, the settlement characteristics of highway soft soil foundation during the test simulation were studied, and the characteristics of different treatment methods were compared. The high level of pore water pressure corresponds to the rapid development of settlement. The average settlement during the existing operation period accounts for 96.7% of the total settlement of the simulation period, and the settlement does not converge. The methods can effectively inhibit the development of settlement, and each has its own characteristics: the LRP method does not involve foundation treatment, so its settlement characteristics are closest to that without treatment. The LDLP method can obviously limit the settlement within the embankment range and the pore water dissipation. The JGP method enhances the synergistic deformation ability of the embankment and significantly decreases the differential settlement.

期刊论文 2025-02-01 DOI: 10.3390/buildings15040537

To reuse industrial solid wastes and waste clay with low liquid limit, a kind of soil solidification material by using cement, quicklime and industrial solid wastes such as ground granulated blast -furnace slag (GGBS), silica fume (SF) was developed in this study. Response surface methodology (RSM) based on central composite design (CCD) was used to design the experiment and optimize the mix ratio of GGBS, quicklime and SF under certain cement content conditions (i.e., the content ratio of cement, GGBS, quicklime, and SF was 5: 9.14: 1.7: 2.13). A soil solidification agent named O-QGS was developed to solidify waste clay with low liquid limit. To clarify the solidification mechanism of solidified soil, a series of laboratory experiments such as UCS test, water stability test, and scanning electron microscopy (SEM) test were carried out to capture the mechanical properties, water stability, and microstructure of O-QGS solidified soil and cement solidified soil. For practical purpose of O-QGS, a method for forming prefabricated pile by using O-QGS solidified soil was developed, and a method for strengthening soft foundations with prefabricated O-QGS solidified soil pile was proposed. Based on the results of load tests, the bearing capacity of prefabricated O-QGS solidified soil pile and cement high-pressure rotary jet grouting pile, as well as the composite foundations bearing capacity of prefabricated O-QGS solidified soil pile and cement high-pressure rotary jet grouting pile used for strengthening soft foundations, were analyzed. The feasibility of prefabricated O-QGS solidified soil pile used for strengthening soft foundations was verified in practice. The present study shows that the UCS of O-QGS solidified soil is 7.25 MPa at 28 days, and the water stability coefficient of O-QGS solidified soil is larger than 0.8. Compared with the method of cement highpressure rotary jet grouting pile to reinforce soft foundation, the bearing capacity of prefabricated O-QGS solidified soil pile to reinforce soft foundation is higher, and the cost can be saved by 22.4 %.

期刊论文 2024-07-19 DOI: 10.1016/j.conbuildmat.2024.136986 ISSN: 0950-0618

The dynamic compaction method has been widely adopted in foundation treatment to densify the soil fillers. However, for the complexity of the impact behavior and soil mechanical properties, the theoretical research of dynamic compaction lags behind its practice for complex soil properties and stress paths. This paper presents a theoretical model applied to describe soil column plastic deformation under impact load. The relationship among stress increment, strain increment, and plastic wave velocity was derived from the aspect of propagation characteristics of stress waves in soil first. Combined with the Duncan-Chang Model, a one-dimensional theoretical model was established then. A numerical model was developed further to check the performance of the model. It showed that the deformation at the end of the soil column was mushroom-shaped. Both the axial and lateral deformation increased with the impact velocity. While some particles located at the side of the soil column end may splash under repeated impact. The theoretical deformations of the soil column were consistent with the experimental results both in the direction of axial and lateral.

期刊论文 2024-06-26 DOI: 10.3389/fmats.2024.1401018 ISSN: 2296-8016
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页