In order to investigate the frost-heaving characteristics of wintering foundation pits in the seasonal frozen ground area, an outdoor in-situ test of wintering foundation pits was carried out to study the changing rules of horizontal frost heave forces, vertical frost heave forces, vertical displacement, and horizontal displacement of the tops of the supporting piles under the effect of groundwater and natural winterization. Based on the monitoring condition data of the in-situ test and the data, a coupled numerical model integrating hydrothermal and mechanical interactions of the foundation pit, considering the groundwater level and phase change, was established and verified by numerical simulation. The research results show that in the silty clay-sandy soil strata with water replenishment conditions and the all-silty clay strata without water replenishment conditions, the horizontal frost heave force presents a distribution feature of being larger in the middle and smaller on both sides in the early stage of overwintering. With the extension of freezing time, the horizontal frost heave force distribution of silty clay-sand strata gradually changes from the initial form to the Z shape, while the all-silty clay strata maintain the original distribution characteristics unchanged. Meanwhile, the peak point of the horizontal frost heave force in the all-silty clay stratum will gradually shift downward during the overwintering process. This phenomenon corresponds to the stage when the horizontal displacement of the pile top enters a stable and fluctuating phase. Based on the monitoring conditions of the in-situ test, a numerical model of the hydro-thermo-mechanical coupling in the overwintering foundation pit was established, considering the effects of the groundwater level and ice-water phase change. The accuracy and reliability of the model were verified by comparison with the monitoring data of the in-situ test using FLAC3D finite element analysis software. The evolution of the horizontal frost heaving force of the overwintering foundation pit and the change rule of its distribution pattern under different groundwater level conditions are revealed. This research can provide a reference for the prevention of frost heave damage and safety design of foundation pit engineering in seasonal frozen soil areas.
In performance-based design, it is crucial to understand deformation characteristics of geocell layers in soil under footing loads. To explore this, a series of laboratory loading tests were carried out to investigate the influence of varying parameters on the strain levels within the geocell layer in a sandy soil under axial strip footing loading. The results were analyzed in terms of maximum strain levels, strain variation along the geocell layer and the correlation between horizontal and vertical strains. In this study, the maximum observed strain levels for geocellreinforced strip footing systems reached 2.3 % for horizontal (tensile) strain and 1.4 % for vertical (compressive) strain. Furthermore, most strain levels were concentrated within a distance of 1.5 times the footing width from the axis of strip footing. In geocell-reinforced footing systems, the interaction between horizontal and vertical strains becomes a key factor, with the ratio of horizontal to vertical cell wall strains ranging approximately from 1 to 2.5. The outcomes of this study are expected to contribute to the practical applications of geocell-reinforced footing systems.
Fiber reinforcement has been demonstrated to mitigate soil liquefaction, making it a promising approach for enhancing the seismic resilience of tunnels in liquefiable strata. This study investigates the seismic response of a tunnel embedded in a liquefiable foundation locally improved with carbon fibers (CFs). Consolidated undrained (CU), consolidated drained (CD), and undrained cyclic triaxial (UCT) tests were conducted to determine the optimal CFs parameters, identifying a fiber length of 10 mm and a volume content of 1 % as the most effective. A series of shake table tests were performed to evaluate the effects of CFs reinforcement on excess pore water pressure (EPWP), acceleration, displacement, and deformation characteristics of both the tunnel and surrounding soil. The results indicate that CFs reinforcement significantly alters soil-tunnel interaction dynamics. It effectively mitigates liquefaction by enhancing soil stability and slowing EPWP accumulation. Ground heave is reduced by 10 %, while tunnel uplift deformation decreases by 61 %, demonstrating the stabilizing effect of CFs on soil deformation. The fibers network interconnects soil particles, improving overall structural integrity. However, the increased shear strength and stiffness due to CFs reinforcement amplify acceleration responses and intensify soil-structure interaction, leading to more pronounced tunnel deformation compared to the unimproved case. Nevertheless, the maximum tunnel deformation remains within 3 mm (0.5 % of the tunnel diameter), posing no significant structural risk from the perspective of the experimental model. These findings provide valuable insights into the application of fibers reinforcement for improving tunnel stability in liquefiable foundations.
A series of large-scale shaking table tests were conducted to investigate the dynamic response and damage characteristics of the variable- single pile foundation in liquefiable soil-rock interaction strata under seismic loading. The test results show that the seismic responses of the excess pore pressure ratio under seismic excitations are divided into four stages, among which the difference in the sustained liquefaction stage is the most significant. Pile acceleration amplification is governed by dual coupling effects of soil-pile interaction and structural stiffness. The pile body bending moment distribution features dual-peak characteristics, the largest peak arises at the soil layers interface, while the other peak occurs at the variable-section. Increased seismic excitation accelerates the liquefaction of the saturated sand layer, yet simultaneously slows down the dissipation of the excess pore pressure. As the seismic excitation increases, the acceleration response and displacement response of the pile top are most significant, though maximum bending moment positions remain stable. The stress overrun damage occurs gradually in the variable- zone under strong earthquakes. Based on the analysis results and the Fourier spectrum modal characteristics of the pile top, the damage mechanism of the pile body is revealed and verified. This study will provide an essential reference for further understanding the seismic response and damage of the variable- single pile foundation in liquefiable soil-rock interaction strata.
Bucket foundations are considered to be environmentally friendly foundations. Their stiffness determines the resonant frequencies and fatigue life of the supported offshore wind turbines. This study proposes a rigorous three-dimensional (3D) elastic solution for the stiffness of laterally loaded bucket foundations in different soil profiles. The lumped spring stiffness acting on the top of the bucket and the exact distribution of the distributed soil spring stiffness along the bucket are first obtained from the analytical model. Closed-form formulae for the lumped spring stiffness are then fitted and verified with the existing studies. To facilitate the engineering application, the distributed soil spring stiffness is then averaged to a uniform distribution using the equivalent work method. Two types of simplified Winkler models are finally proposed and calibrated: one in which the spring stiffness is uniformly distributed along the bucket, and the other in which the distributed Winkler springs are divided into two parts bounded by the centre of rotation. The non-dimensional Winkler springs are mainly related to the bucket aspect ratio, the soil Poisson's ratio and the loading height. It is shown that the lateral soil springs alone, asp-y springs for piles, are not sufficient for bucket foundations. The combined two-part p-y springs and uniform rotational springs are suggested to obtain accurate bucket foundation responses.
As a newly emerged solution for supporting the new generation of offshore wind turbines (OWTs), the pile-bucket foundation has received wide attention. However, little attention has been paid to the grouted connection that connects the monopile and bucket foundation. As the loadtransferring, yet vulnerable component, the fatigue mechanism of the grouted connection and its influence on the cyclic laterally-loaded response of OWT foundation are still not clear. In this study, a sophisticated three-dimensional (3D) finite element (FE) model of the pile-bucket foundation with grouted connection is constructed, which incorporates a hypoplastic clay model and the concrete damage plasticity (CDP) to consider the cyclic load effect on both soil and grout material. A modal analysis is first performed to verify the rationality of the proposed model. Then the influence of cyclic load frequency, load amplitude and stiffener arrangement on the accumulation of pile head displacement, stress distribution and crack development of the grouted connection is systematically analyzed. Results indicate that as load frequency approaches the eigen-frequency, the OWT structure tends to vibrate more intensively, leading to stress concentration and fatigue damage of the grouted material and rapid accumulation of the pile-head displacement. The influence of load amplitude on grout damage seems to be limited in the contact area in the simulated cases. Meanwhile, the installation of stiffeners slightly mitigates the pile head displacement accumulation, but also raises the risk of stress concentration and fatigue damage of the grouted connection. The numerical results reveal the load-transferring function and fatigue damage of the grouted connection, which could provide some reference for an optimized structure and dynamic design for the pile-bucket foundation under cyclic load.
This study conducted load-bearing capacity tests to quantitatively analyze the impact of permafrost degradation on the vertical load-bearing capacity of railway bridge pile foundations. Meanwhile, a prediction model vertical load-bearing capacity for pile foundations considering permafrost degradation was developed and validated through these tests. The findings indicate that the permafrost degradation significantly influences both the failure patterns of the pile foundation and the surrounding soil. With the aggravation of permafrost degradation, damage to the pile foundation and the surrounding soil becomes more pronounced. Furthermore, permafrost degradation aggravates, both the vertical ultimate bearing capacity and maximum side friction resistance of pile foundations exhibit a significant downward trend. Under unfrozen soil conditions, the vertical ultimate bearing capacity of pile foundations is reduced to 20.1 % compared to when the permafrost thickness 160 cm, while the maximum side friction resistance drops to 13.2 %. However, permafrost degradation has minimal impact on the maximum end bearing capacity of pile foundations. Nevertheless, as permafrost degradation aggravates, the proportion of the maximum end bearing capacity attributed to pile foundations increases. Moreover, the rebound rate of pile foundations decreases with decreasing permafrost thickness. Finally, the results confirm that the proposed prediction model can demonstrates a satisfactory level of accuracy in forecasting the impact of permafrost degradation on the vertical load-bearing capacity of pile foundations.
In this paper, through extensive on-site research of the plain concrete composite foundation for the Jiuma Expressway, the study conducted proportional scaling tests. This study focused on the temperature, moisture, pile-soil stress, and deformation of this foundation under freeze-thaw conditions. The findings indicate that the temperature of the plain concrete pile composite foundation fluctuates sinusoidally with atmospheric temperature changes. As the depth increases, both temperature and lag time increase, while the fluctuation range decreases. Furthermore, the effect of atmospheric temperature on the shoulder and slope foot is more significant than on the interior of the road. During the freeze-thaw cycle, the water content and pore-water pressure in the foundation fluctuate periodically. The pile-soil stress fluctuates periodically with the freeze-thaw cycle, with the shoulder position exhibiting the most significant changes. Finally, the road displays pronounced freeze-thaw deformations at the side ditch and slope toe. This study provides a valuable basis for the construction of highway projects in cold regions.
Recent studies have highlighted the potential benefits of allowing inelastic foundation response during strong seismic shaking. This approach, known as rocking isolation, reduces the moment at the base of the column by transferring the plastic joint beneath the foundation and into the soil bed. This mechanism acts as a fuse, preventing damage to the superstructure. However, structures with a low static safety factor against vertical loads (FSv) may experience unacceptable settlements during earthquakes. To address this, shallow soil improvement is proposed to ensure sufficient safety and mitigate risks. In this study, a small-scale physical model of a foundation and structure (SDOF model, n = 40) was placed on dense sandy soil, and seismic loading was simulated using lateral displacement applied by an actuator. A group of short-yielding piles with varying bearing capacities (QU/NU = 0.1-0.8) was installed beneath the rocking foundation. The results of the small-scale tests demonstrate that the use of short-yielding piles during seismic loading reduces the settlement of the shallow foundation by up to 50% and increases rotational damping by 59%. This is achieved through the frictional yielding of the pile wall and the yielding of the pile tip, which dissipate energy and enhance the overall seismic performance of the foundation. The findings suggest that incorporating yielding pile groups in the design of rocking foundations can significantly improve their seismic performance by reducing settlement and increasing energy dissipation, making it a viable strategy for enhancing the resilience of structures in earthquake-prone areas. The optimal bearing capacity ratio (QU/NU = 0.25-0.5) provides a straightforward guideline for designing cost-effective seismic retrofits.
Calculation and prediction of the uplift capacity of squeezed branch piles (SBP) are still immature. This study develops a method to predict the load-displacement relationship and ultimate capacity of SBP under pullup load by using a hyperbolic model to describe the nonlinear load transfer between pile-soil and plate-soil. The uplift bearing behaviors of SBP are analyzed through six sets of indoor model tests in homogeneous soils. The results, along with field tests of single-plate piles in layered soils and the indoor tests, confirm the high accuracy of the theoretical prediction method. The effects of three factors, including the pile side soil damage ratio (Rf), the horizontal earth pressure coefficient (k) and the damage angles of the soil under plate (psi), on the prediction results are analyzed. The results show that these factors significantly affect the second half of the loaddisplacement curve of SBP. Furthermore, as the Rf rises, the anticipated ultimate uplift capacity of SBP decreases linearly; as the k rises, it increases linearly; and as the psi rises, it increases nonlinearly.