共检索到 12

A heavy armed conflict erupted in Tigray region of Ethiopia in 2020, and the crisis continued up to 2022. This study investigates the impacts of this crisis on the status of natural resources, and Soil and Water Conservation (SWC) efforts. We collected primary data through field observations, measurements, interviews and group discussions during the wartime. We also reviewed published articles and official archives to complement the primary data, which were often challenging to obtain due to the war. We found that vegetated landscapes were damaged by artillery fire and bombings. The average depth of the surveyed bomb craters along the asphalts was 1.15 +/- 0.47 m (n 1/4 16), whereas the average surface diameter of the craters and their rim was 2.66 +/- 0.67 m. In addition, the construction of numerous military trenches along croplands and hillsides exposed the soil particles into erosion and water pollution. The conflict also halted SWC efforts on various land uses, which were carried out annually during peacetime. For instance, 20,591 km/year of stone bunds were not constructed per year due to the crisis. Moreover, terraces and stone bunds were demolished to construct temporary ground fortifications. Indirectly, the critical energy crisis further increased pressure on forests. In this context, the poor farmers shift their livelihood strategies from the long-term sustainability to immediate economic recovery during the critical time. To conclude, the pathways of the warfare undermined the status of natural resources, and the ongoing decades of re-greening programs. Therefore, our ground-based findings can be used to prioritize and rehabilitate the war-damaged landscape services. (c) 2024 International Research and Training Center on Erosion and Sedimentation, China Water and Power Press, and China Institute of Water Resources and Hydropower Research. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY- NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

期刊论文 2025-06-01 DOI: 10.1016/j.iswcr.2024.11.004 ISSN: 2095-6339

Currently, there is a growing concern for human health with the rise of environmental pollution. Water contamination and health problems had been understood. Sanitation-related health issues have been overcome in the greater part of the world. Progressive industrialization has caused a number of new pollutants in water and in the atmosphere. It is a growing concern for the human health, especially upon the reproductive health. Current researchers provide a strong association between the rising concentrations of ambient pollutants and the adverse health impact. Furthermore, the pollutants have the adverse effects upon reproductive health as well. Major concern is for the health of a pregnant woman and her baby. Maternal-fetal inflammatory response due to the pollutants affects the pregnancy outcome adversely. Preterm labor, fetal growth restriction, intrauterine fetal death, and stillbirths have been observed. Varieties of pathological processes including inflammation, endocrine dysfunction, epigenetic changes, oxidative and nitrosative stress, and placental dysfunction have been explained as the biological plausibility. Prospective studies (systematic review and meta-analysis) have established that exposure to particulate matters (PM) and the nanoparticles (NP) leads to excessive oxidative changes to cause DNA mutations, lipid peroxidation and protein oxidation. Progressive industrialization and emergence of heavy metals, micro- (MP) and nanoparticles (NP) in the atmosphere and in water are the cause for concern. However, most of the information is based on studies from industrialized countries. India needs its own country-based study to have the exact idea and to develop the mechanistic pathways for the control.

期刊论文 2025-04-01 DOI: 10.1007/s13224-025-02128-2 ISSN: 0971-9202

Forests play an important role in controlling the formation and movement processes of debris flows. They contribute to soil stabilization, regulation of soil water content, and act as robust structures impeding the downstream progression of debris flows. On the positive side, trees, to some extent, can intercept debris flows and effectively mitigate their velocity by increasing flow resistance. On the negative side, trees may suffer damage from debris-flow hazards, characterized by the generation of substantial quantities of wood fragments and consequential ramifications such as river channel blockage, resulting in backwater rise. In extreme cases, this blockage collapse can lead to instantaneous discharge amplification, thereby adversely impacting urban safety and impeding sustainable development. Therefore, in order to grasp the effects of tree characteristics on tree failure modes, the tree failure modes and corresponding parameters, diameters at breast height (DBH) and root-soil plate size, were identified and recorded through the post-event field investigation in Keze Gully, a region prone to debris-flow events in Sichuan, China, respectively. To investigate the impact of spatial variability in tree root distribution on tree failure modes, the root cross-sectional area ratio (RAR), root density (RD), root length density (RLD) and soil detachment rate (SDR) were obtained. The findings indicated that: (1) Tree characteristics reflect the interactions of debris flows and trees, and influence the tree failure modes ultimately. The root distribution characteristics influence the size and shape of the root-soil plate to affect the resistance of trees. (2) Compared to burial and abrasion, stem breakage and overturning are the predominant modes of tree failure in debris-flow hazards. Trees with a smaller DBH primarily experience stem breakage and bending, and trees with a larger DBH mostly experience overturning. (3) The root-soil plate shapes of overturned trees, affected by the root architecture and root growth range, are generally semielliptical or semicircular, and the horizontal and vertical radii increase with DBH, but the correlation between the root-soil plate's breadth-depth ratio and DBH is low. (4) The biomass and RAR decrease with distance. The RAR distribution exhibit the order of upslope direction > downslope direction > lateral direction. The coarse root biomass significantly increases with DBH, but no clear trend in fine root biomass. (5) The roots can significantly enhance the soil erosion resistance, but the erosion resistance of coarse roots is not as significant as that of fine roots. The erosion resistance increases with DBH, and follows the order of upslope direction > downslope direction > lateral direction. The results could provide new insights into the influences of tree and root distribution characteristics on tree failure modes during debris flows.

期刊论文 2024-12-01 DOI: 10.1007/s11629-024-8887-2 ISSN: 1672-6316

The ruined landscapes of the Mediterranean littoral are a consequence of millennia of human impact and include abandoned agricultural lands, deforested areas, and degraded coastal areas. One of the drivers is the historical pattern of land use, which has resulted in the clearing of vegetation, soil erosion, and overgrazing. These have caused significant damage to natural ecosystems and landscapes leading to soil degradation, loss of biodiversity, and the destruction of habitats. The UN Sustainable Development Goal 15 Life on Land recommends a substantial increase in afforestation (SDG 15.2). Whilst this goal is certainly necessary in places, it should be implemented with caution. The general perception that certain ecosystems, such as forests, are inherently more valuable than grasslands and shrublands contributes to afforestation drives prioritising quick and visible results. This, however, increases the possibility of misguided afforestation, particularly in areas that never supported forests under the present climatic conditions. We argue that in areas that have not supported forest ecosystems, targeted reinforcement of existing populations and recreation of historical ones is preferable to wholesale ecosystem modification disguised as afforestation. We present a possible strategy for targeted reinforcement in areas that never supported forests and that would still achieve the goals of SDGs 15.5 and 15.8.

期刊论文 2024-11-01 DOI: 10.3390/su16229771

Douglas-fir (Pseudotsuga menziesii var. menziesii) is an important species in the Pacific Northwest including California forests. Due to the increasing need for reforestation in this region after widespread disturbances related to changes in climate (i.e., drought, megafires, beetle mortality), it is necessary to examine the factors that contribute to performance and survival of planted seedlings in reforestation projects. While most conifer planting in northern California is done in spring, fall planting is also an alternative practice used. With the recent increase in demand of seedlings for reforestation projects beyond which the current infrastructure is capable of, particularly in spring, expanding the fall planting season has potential to mitigate this and constraints to the spring labor force. Here, we studied the first-year performance of both spring and fall planted Douglas-fir seedlings for different seed sources and nursery cultural timings at a single site in northern California. We found that the fall planting can be successful in October or November, while planting earlier requires immediately favorable temperature and soil moisture conditions. Later sowing and blackout regimes also resulted in increases in height growth and bud development while also reducing damage due to spring freezes. For spring planting, early sow and blackout resulted in earlier bud break, while later sow, blackout, and lift dates benefited the first-year growth of height and diameter.

期刊论文 2024-09-01 DOI: 10.1007/s11056-023-10020-y ISSN: 0169-4286

The objective of this study was to advance sustainable forestry development through the creation of mechanical equipment, taking into account forestry operational methods. A suspended automatic feeding and retracting excavation device for tree pits was engineered, and its interaction with soil was investigated by integrating the Discrete Element Method (DEM) with Multi-Flexible Body Dynamics (MFBD). Based on simulation results, the research explored the impact mechanisms of the machine on soil transportation, working load, and fatigue lifespan of the spiral blades for different terrains and operating conditions. The coupling simulation method demonstrated the potential for designing and testing forestry equipment in specific operating environments, reducing time and resource consumption for field testing. Terrain significantly influenced soil disturbance variability, while the effect of operating direction was minor. Operational parameters should consider soil and water conservation, favoring the formation of fish-scale pits. Field tests in forested areas validate the practicality of the apparatus, providing valuable insights for the operation and equipment design of earth augers in hilly regions.

期刊论文 2024-07-01 DOI: 10.3390/su16135402

Scientific innovation is overturning conventional paradigms of forest, water, and energy cycle interactions. This has implications for our understanding of the principal causal pathways by which tree, forest, and vegetation cover (TFVC) influence local and global warming/cooling. Many identify surface albedo and carbon sequestration as the principal causal pathways by which TFVC affects global warming/cooling. Moving toward the outer latitudes, in particular, where snow cover is more important, surface albedo effects are perceived to overpower carbon sequestration. By raising surface albedo, deforestation is thus predicted to lead to surface cooling, while increasing forest cover is assumed to result in warming. Observational data, however, generally support the opposite conclusion, suggesting surface albedo is poorly understood. Most accept that surface temperatures are influenced by the interplay of surface albedo, incoming shortwave (SW) radiation, and the partitioning of the remaining, post-albedo, SW radiation into latent and sensible heat. However, the extent to which the avoidance of sensible heat formation is first and foremost mediated by the presence (absence) of water and TFVC is not well understood. TFVC both mediates the availability of water on the land surface and drives the potential for latent heat production (evapotranspiration, ET). While latent heat is more directly linked to local than global cooling/warming, it is driven by photosynthesis and carbon sequestration and powers additional cloud formation and top-of-cloud reflectivity, both of which drive global cooling. TFVC loss reduces water storage, precipitation recycling, and downwind rainfall potential, thus driving the reduction of both ET (latent heat) and cloud formation. By reducing latent heat, cloud formation, and precipitation, deforestation thus powers warming (sensible heat formation), which further diminishes TFVC growth (carbon sequestration). Large-scale tree and forest restoration could, therefore, contribute significantly to both global and surface temperature cooling through the principal causal pathways of carbon sequestration and cloud formation. We assess the cooling power of forest cover at both the local and global scales. Our differentiated approach based on the use of multiple diagnostic metrics suggests that surface albedo effects are typically overemphasized at the expense of top-of-cloud reflectivity. Our analysis suggests that carbon sequestration and top-of-cloud reflectivity are the principal drivers of the global cooling power of forests, while evapotranspiration moves energy from the surface into the atmosphere, thereby keeping sensible heat from forming on the land surface. While deforestation brings surface warming, wetland restoration and reforestation bring significant cooling, both at the local and the global scale.image

期刊论文 2024-02-01 DOI: 10.1111/gcb.17195 ISSN: 1354-1013

Check dams and afforestation are widely used to control debris flows; however, the combined effects of mitigation changes caused by sedimentation behind the check dams as well as the growth of vegetation are unclear. This paper reports long-term measurements of the erosion base level behind check dams along the Shengou gully, which is an active debris flow gully with 19 shallow soil landslides along its banks. The loose sediment on the shallow soil landslides, which is affected by afforestation, is the main source of material and energy for debris flows in this gully. The change in the mechanical properties of the loose sediment on the shallow soil landslides was determined. Based on the mechanical properties of the shallow soil landslides and the erosion base level behind the check dams, the volume and potential energy of the shallow soil landslide sediment were calculated. A model of the vegetation coverage, shallow soil landslide energy, and debris flow volume was established and applied to the Shengou gully. The results show that the model can evaluate the different benefits of check dams and afforestation on debris flow mitigation given the sedimentation behind the check dams and the vegetation growth.

期刊论文 2024-02-01 DOI: 10.1007/s11069-023-06289-z ISSN: 0921-030X

Purpose of ReviewInternational ambitions for massive afforestation and restoration are high. To make these investments sustainable and resilient under future climate change, science is calling for a shift from planting monocultures to mixed forests. But what is the scientific basis for promoting diverse plantations, and what is the feasibility of their establishment and management? As the largest global network of tree diversity experiments, TreeDivNet is uniquely positioned to answer these pressing questions. Building on 428 peer-reviewed TreeDivNet studies, combined with the results of a questionnaire completed by managers of 32 TreeDivNet sites, we aimed to answer the following questions: (i) How and where have TreeDivNet experiments enabled the relationship between tree diversity and tree performance (including productivity, survival, and pathogen damage) to be studied, and what has been learned? (ii) What are the remaining key knowledge gaps in our understanding of the relationship between tree diversity and tree performance? and (iii) What practical insights can be gained from the TreeDivNet experiments for operational, real-world forest plantations?Recent FindingsWe developed a conceptual framework that identifies the variety of pathways through which target tree performance is related to local neighbourhood diversity and mapped the research efforts for each of those pathways. Experimental research on forest mixtures has focused primarily on direct tree diversity effects on productivity, with generally positive effects of species and functional diversity on productivity. Fewer studies focused on indirect effects mediated via biotic growing conditions (e.g. soil microbes and herbivores) and resource availability and uptake. Most studies examining light uptake found positive effects of species diversity. For pests and diseases, the evidence points mostly towards lower levels of infection for target trees when growing in mixed plantations. Tree diversity effects on the abiotic growing conditions (e.g. microclimate, soil properties) and resource-use efficiency have been less well studied to date. The majority of tree diversity experiments are situated in temperate forests, while (sub)tropical forests, and boreal forests in particular, remain underrepresented.SummaryTreeDivNet provides evidence in favour of mixing tree species to increase tree productivity while identifying a variety of different processes that drive these diversity effects. The design, scale, age, and management of TreeDivNet experiments reflect their focus on fundamental research questions pertaining to tree diversity-ecosystem function relationships and this scientific focus complicates translation of findings into direct practical management guidelines. Future research could focus on (i) filling the knowledge gaps related to underlying processes of tree diversity effects to better design plantation schemes, (ii) identifying optimal species mixtures, and (iii) developing practical approaches to make experimental mixed plantings more management oriented.

期刊论文 2024-02-01 DOI: 10.1007/s40725-023-00208-y ISSN: 2198-6436

The 2011 off the Pacific coast of Tohoku Earthquake occurred, and coastal forests were severely damaged by a huge tsunami. Since the disaster, coastal forest restoration projects have been underway by the Forestry Agency and local governments. Detailed time-series monitoring of the regeneration process of coastal forests is important in order to proceed with regeneration appropriately. The Normalized Difference Vegetation Index (NDVI), which uses near-infrared and visible red images obtained from optical satellite observations, has been widely used to survey trees and vegetation. However, it has been reported that NDVI tends to be saturated depending on the observation period and vegetation type. In addition, there is a tendency for index values to be overestimated on the soil surface. In particular, in the case of coastal forest regeneration, the influence of the soil surface is even greater because the complex mixture of soil surface and afforestation is assessed from observation images. To date, many improvement vegetation indices have been proposed to reduce soil surface effects and more appropriately evaluate vegetation activity. However, the applicability of improvement indexes using higher-resolution satellite images for evaluating the regeneration of tsunami-affected coastal forests has not yet been sufficiently investigated.

期刊论文 2024-01-01 DOI: 10.1117/12.3027608 ISSN: 0277-786X
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共12条,2页