共检索到 360

Most gravel roads leading to rural areas in Ghana have soft spot sections as a result of weak lateritic subgrade layers. This study presents a laboratory investigation on a typical weak lateritic subgrade soil reinforced with non-woven fibers. The objective was to investigate the strength characteristic of the soil reinforced with non-woven fibers. The California Bearing Ratio and Unconfined Compressive Strength tests were conducted by placing the fibers in single layer and also in multiple layers. The results showed an improved strength of the soil from a CBR value of 7%. The CBR recorded maximum values of 30% and 21% for coconut and palm fibers inclusion at a placement depth of H/5 from the compacted surface. Multiple fiber layer application at depths of H/5 & 2 h/5 yielded CBR values of 38% and 31% for coconut and palm fibers respectively. The Giroud and Noiray design method and the Indian Road Congress design method recorded reduction in the thickness of pavement of 56% to 63% for coconut fiber inclusion and 45% to 55% for palm fiber inclusion. Two-way statistical analysis of variance (ANOVA) showed significant effect of depth of fiber placement and fiber type on the geotechnical characteristics considered. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic),CBR(sic)(sic)7%(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)H/5(sic)(sic)(sic)(sic)(sic)(sic),CBR(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)30%(sic)21%. (sic)H/5(sic)2H/5(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)CBR(sic)(sic)(sic)(sic)38%(sic)31%. Giroud&Noiray(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)56%(sic)63%,(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)45%(sic)55%. (sic)(sic)(sic)(sic)(sic)(sic)(ANOVA)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).

期刊论文 2025-12-31 DOI: 10.1080/15440478.2025.2497911 ISSN: 1544-0478

Earthquakes are common geological disasters, and slopes under seismic loading can trigger coseismic landslides, while also becoming unstable due to accumulated damage caused by the seismic activity. Reinforced soil slopes are widely used as seismic-resistant geotechnical systems. However, traditional geosynthetics cannot sense internal damage in reinforced soil systems, and existing in-situ distributed monitoring technologies are not suitable for seismic conditions, thus limiting accurate post-earthquake stability assessments of slopes. This study presents, for the first time, the use of a batch molding process to fabricate self-sensing piezoelectric geogrids (SPGG) for distributed monitoring of soil behavior under seismic conditions. The SPGG's reinforcement and damage sensing abilities were verified through model experiments. Results show that SPGG significantly enhances soil seismic resistance and can detect soil failure locations through voltage distortions. Additionally, the tensile deformation of the reinforcement material can be quantified with sub-centimeter precision by tracking impedance changes, enabling high-precision distributed monitoring of reinforced soil under seismic conditions. Notably, when integrated with wireless transmission technology, the SPGG-based monitoring system offers a promising solution for real-time monitoring and early warning in road infrastructure, where rapid detection and response to seismic hazards are critical for mitigating catastrophic outcomes.

期刊论文 2025-12-01 DOI: 10.1016/j.geotexmem.2025.05.007 ISSN: 0266-1144

To investigate the effect of interface temperature on the soil-reinforcement interaction mechanism, a series of pullout tests were conducted considering different types of reinforcement (geogrid and non-woven geotextile), backfill (dry sand, wet sand, and clay), and six interface temperatures. The test results indicate that at interface temperatures of 0 degrees C and above, reinforcement failure didn't occur during the pullout tests, whereas it predominantly occurred at subzero temperatures. Besides, the pullout resistance for the same soil-reinforcement interface gradually decreased as the interface temperature rose. At a given positive interface temperature, the pullout resistance between wet sand and reinforcement was significantly higher than that of the clayreinforcement interface but lower than that of the dry sand-reinforcement interface. Compared with geotextile reinforcements, geogrids were more difficult to pull out under the same interface temperature and backfill conditions. In addition, the lag effect in the transfer of tensile forces within the reinforcements was significantly influenced by the type of soil-reinforcement interface and the interface temperature. Finally, the progressive deformation mechanism along the reinforcement length at different interface temperatures was analyzed based on the strain distribution in the reinforcement.

期刊论文 2025-12-01 DOI: 10.1016/j.geotexmem.2025.06.002 ISSN: 0266-1144

To investigate the coupled time effects of root reinforcement and wet-dry deterioration in herbaceous plant-loess composites, as well as their microscopic mechanisms, this study focused on alfalfa root-loess composites at different growth stages cultivated under controlled conditions. The research included measuring root morphological parameters, conducting wet-dry cycling tests, and performing triaxial compression tests and microscopic analyses (CT scanning and nuclear magnetic resonance) on both bare loess and root-loess composites under various wet-dry cycling conditions. By obtaining shear strength parameters and microstructural indices, the study analyzed the temporal evolution of the shear strength and microstructural characteristics of root-loess composites under wet-dry cycling. The findings indicated that the alfalfa root-loess composite effective cohesion was significantly higher than that of the plain soil in the same growth stage. The alfalfa root-loess composite effective cohesion increased during the growth stage in the same dry-wet cycles. The alfalfa root-loess composite effective cohesion in the same growth stage was negatively correlated with the number of dry-wet cycles. The fatigue damage of the soil's microstructure (pore coarsening, cement hydrolysis, and crack development) increased continuously with the number of dry-wet cycles. However, due to the difference in mechanical properties between roots and the soil, the root-soil composite prevented the deterioration of the soil matrix strength by the dry-wet cycles. As the herbaceous plants grow, the time effect observed in the shear strength of the root-soil composite under the action of dry-wet cycles is the result of the interaction and dynamic coordination between the soil-stabilizing function of the herbaceous plant roots and the deterioration caused by drywet cycles.

期刊论文 2025-11-01 DOI: 10.1016/j.still.2025.106684 ISSN: 0167-1987

In order to investigate the frost-heaving characteristics of wintering foundation pits in the seasonal frozen ground area, an outdoor in-situ test of wintering foundation pits was carried out to study the changing rules of horizontal frost heave forces, vertical frost heave forces, vertical displacement, and horizontal displacement of the tops of the supporting piles under the effect of groundwater and natural winterization. Based on the monitoring condition data of the in-situ test and the data, a coupled numerical model integrating hydrothermal and mechanical interactions of the foundation pit, considering the groundwater level and phase change, was established and verified by numerical simulation. The research results show that in the silty clay-sandy soil strata with water replenishment conditions and the all-silty clay strata without water replenishment conditions, the horizontal frost heave force presents a distribution feature of being larger in the middle and smaller on both sides in the early stage of overwintering. With the extension of freezing time, the horizontal frost heave force distribution of silty clay-sand strata gradually changes from the initial form to the Z shape, while the all-silty clay strata maintain the original distribution characteristics unchanged. Meanwhile, the peak point of the horizontal frost heave force in the all-silty clay stratum will gradually shift downward during the overwintering process. This phenomenon corresponds to the stage when the horizontal displacement of the pile top enters a stable and fluctuating phase. Based on the monitoring conditions of the in-situ test, a numerical model of the hydro-thermo-mechanical coupling in the overwintering foundation pit was established, considering the effects of the groundwater level and ice-water phase change. The accuracy and reliability of the model were verified by comparison with the monitoring data of the in-situ test using FLAC3D finite element analysis software. The evolution of the horizontal frost heaving force of the overwintering foundation pit and the change rule of its distribution pattern under different groundwater level conditions are revealed. This research can provide a reference for the prevention of frost heave damage and safety design of foundation pit engineering in seasonal frozen soil areas.

期刊论文 2025-10-01 DOI: 10.1016/j.jobe.2025.113108

Soil erosion can be effectively controlled through vegetation restoration. Specifically, roots combine with soil to form a root-soil complex, which can effectively enhance soil shear strength and play a crucial role in soil reinforcement. However, the relationship between root mechanical traits and chemical compositions and shear performance and reinforcing capacity of soil is still inadequate. In this study, we determined the root chemical properties, performed root tensile tests and root-soil composite triaxial tests using two plants-one with a fibrous root system (ryegrass, Lolium perenne L.) and the other with a tap root system (alfalfa, Medicago sativa L.)-and calculated the factor of safety (FOS). The results revealed that the relationship between root diameter and tensile strength differed among different root characters. Holocellulose content and cellulose content were the main factors controlling the root tensile strength of ryegrass and alfalfa, respectively. The shear properties of the root-soil complex (cohesion (c) and internal friction angle (phi)) are correlated with soil water content (SWC) and root mass density (RMD). Root traits had a more substantial effect on c than phi, with significant differences in c between ryegrass and alfalfa at 7 % and 11 % SWC. The root-soil complex had an optimum RMD, and the maximum increase rates of c were 80.57 % and 34.4 %, respectively. Along slopes, sliding first occurs at the foot of the slope, thus demanding emphasis on protection and reinforcement. On steep gradients with low SWC, ryegrass strongly contributes to soil reinforcement, whereas alfalfa is more effective on gentle gradients with high SWC. The results provide scientific references for species selection for vegetation restoration in the Loess Plateau and a deeper understanding of the mechanical mechanism of soil reinforcement by roots.

期刊论文 2025-10-01 DOI: 10.1016/j.still.2025.106625 ISSN: 0167-1987

Buried pipelines are essential for the safe and efficient transportation of energy products such as oil, gas, and various chemical fluids. However, these pipelines are highly vulnerable to ground movements caused by geohazards such as seismic faults, landslide, liquefaction-induced lateral spreading, and soil creep, which can result in potential pipeline failures such as leaks or explosions. Response prediction of buried pipelines under such movements is critical for ensuring structural integrity, mitigating environmental risks, and avoiding costly disruptions. As such, this study adopts a Physics-Informed Neural Networks (PINNs) approach, integrated with a transfer learning technique, to predict structural response (e.g., strain) of both unreinforced and reinforced steel pipes subjected to Permanent Ground Displacement (PGD). The PINN method offers a meshless, simulation-free alternative to traditional numerical methods such as Finite Element Method (FEM) and Finite Difference Method (FDM), while eliminating the need for training data, unlike conventional machine learning approaches. The analyses can provide useful information for in-service pipe integrity assessment and reinforcement, if needed. The accuracy of the predicted results is verified against Finite Element (FE) and Finite Difference (FD) methods, showcasing the capability of PINNs in accurately predicting displacement and strain fields in pipelines under geohazard-induced ground movement.

期刊论文 2025-10-01 DOI: 10.1016/j.compgeo.2025.107389 ISSN: 0266-352X

Seasonal freezing and thawing significantly influence the migration and distribution of soil hydrothermal salts. Understanding the dynamics of hydrothermal salt forces in canal foundation soils is crucial for effective canal disease control and optimization. However, the impact on rectangular canals remains poorly understood. Therefore, field-scale studies on water-heat-salt-force-displacement monitoring were conducted for the canal. The study analyzed the changes and interaction mechanisms of water-heat-salt-force in the soil beneath the canal, along with the damage mechanisms and preventive measures. The results indicate that the most rapid changes in temperature, moisture, and salt occur in the subsoil on the canal side, with the greatest depth of freezing. Heat transfer efficiency provides an intuitive explanation for the sensitivity of ground temperature at the junction of the canal wall and subsoil to air temperature fluctuations, as well as the minimal moisture migration in this region under the subcooling effect. The temperature-moisture curve suggests that current waterheat-force and water-heat-salt-force models exhibit a delay in accurately predicting water migration within the subsoil. Rectangular canals are more susceptible to damage under peak freezing conditions, requiring a combined approach of freezing restraint and frost-heaving force to mitigate damage. These findings offer valuable insights for canal design, maintenance, and further research.

期刊论文 2025-10-01 DOI: 10.1016/j.jhydrol.2025.133251 ISSN: 0022-1694

Seismic risk assessment of code-noncompliant reinforced concrete (RC) frames faces significant challenges due to structural heterogeneity and the complex interplay of site-specific hazard conditions. This study aims to introduce a novel framework that integrates three key concepts specifically targeting these challenges. Central to the methodology are fragility fuses, which employ a triplet of curves-lower bound, median, and upper bound-to rigorously quantify within-class variability in seismic performance, offering a more nuanced representation of code-noncompliant building behavior compared to conventional single-curve approaches. Complementing this, spectrum-consistent transformations dynamically adjust fragility curves to account for regional spectral shapes and soil categories, ensuring site-specific accuracy by reconciling hazard intensity with local geotechnical conditions. Further enhancing precision, the framework adopts a nonlinear hazard model that captures the curvature of hazard curves in log-log space, overcoming the oversimplifications of linear approximations and significantly improving risk estimates for rare, high-intensity events. Applied to four RC frame typologies (2-5 stories) with diverse geometries and material properties, the framework demonstrates a 15-40 % reduction in risk estimation errors through nonlinear hazard modeling, while spectrum-consistent adjustments show up to 30 % variability in exceedance probabilities across soil classes. Fragility fuses further highlight the impact of structural heterogeneity, with older, non-ductile frames exhibiting 25 % wider confidence intervals in performance. Finally, risk maps are presented for the four frame typologies, making use of non-linear hazard curves and spectrumconsistent fragility fuses accounting for both local effects and within-typology variability.

期刊论文 2025-09-15 DOI: 10.1016/j.engstruct.2025.120676 ISSN: 0141-0296

Large-diameter monopiles of offshore wind turbines are subjected to continuous multistage cyclic loads of different types (one-way or two-way) and loading amplitudes over time. The loading history is likely to affect the lateral response during the subsequent loading stage. This paper conducts a systematic study on the lateral response of monopiles with and without reinforcement in multilayer soil. Two groups of monotonic centrifuge tests of monopiles with and without reinforcement are carried out to compare and study the influence of reinforcement on the displacement, bending moment and earth pressure of monopile foundations. Local reinforcement in the shallow layer effectively improved the bearing capacity of the monopile foundation. The ultimate bearing capacity of monopile foundations in monotonic tests provides a load basis for cyclic tests. Four groups of continuous multistage cyclic centrifuge tests of monopiles with and without reinforcement with different cyclic modes and loading amplitudesare carried out to investigate the influence of loading history on the lateral cumulative displacement, unloading secant stiffness and bending moment. Empirical design recommendations for monopiles under continuous multistage cyclic loads with different cyclic modes and loading amplitudes are provided based on the results of the tests.

期刊论文 2025-09-01 DOI: 10.1016/j.oceaneng.2025.121728 ISSN: 0029-8018
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共360条,36页