Volcanic pumice, with special characteristics such as crushable particles and high water retention, is distributed throughout Japan and serves as the source layer for slope hazards characterised by post-failure gentle slope flows and long-distance flows. The aim of this study is to determine the relationship between the crushing characteristics and the mechanical properties of porous pumice, which often contributes to such disasters. As the porous pumice material, Ta -d pumice, which caused numerous slope disasters during the 2018 Hokkaido Eastern Iburi Earthquake in Japan, was collected and subjected to a series of triaxial compression tests. The grain size distribution of the pumice before all the tests was adjusted to be uniform, and the amount of crushing was quantified by measuring the grain size distribution after the tests. The results suggest that the critical state and isotropic consolidation of porous pumice can be systematically expressed in a three-dimensional space with the axes of the void ratio, mean effective stress, and degree of particle crushing. Furthermore, a gentle slope disaster with an inclination of less than 21 degrees, that had occurred at the site from which the Ta -d pumice was collected, was discussed in terms of its flow potential, showing that the flow distance can be adequately explained. (c) 2023 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Dynamically loaded soils can exhibit large-deformation flow liquefaction or limited-deformation cyclic mobility mechanisms, depending on the initial state of the soil. Undrained cyclic triaxial tests were performed on saturated calcareous and silica sand specimens prepared with different relative densities and subjected to various effective confining pressures and cyclic stress ratios to study the flowability of viscous liquefied sand. The cyclic shear stress-strain rate relationship for calcareous and silica sands transitioned from an elliptical shape to an asymmetric Lame curve shape as excess pore pressures accumulated under cyclic loading. The asymmetric Lame curve-shaped relationship demonstrates that the saturated sand exhibited low shearing resistance and high fluidity under elevated excess pore pressures for the conditions evaluated. The average flow coefficient, kappa over bar , defined as the maximum shear strain rate triggered by the unit average cyclic shear stress, and the flow curve defining the variation in kappa over bar with the number of loading cycles, describes the flowability of the saturated sand and is used to quantify the cyclic failure potential of the saturated sand under a proposed viscous fluid flow failure criterion. The effect of relative density, effective confining pressure, and cyclic stress ratio on the flow curves and the number of cycles to failure under the proposed viscous fluid flow failure criterion is discussed and compared with the cyclic resistance determined from widely used excess pore pressure- and strain-based cyclic failure criteria. The viscous fluid flow cyclic failure criterion is more stringent than these alternative criteria, and the corresponding axial strains are consistent with those associated with liquefaction triggering under cyclic strain approach.