共检索到 5

Rice bakanae disease is a soil-borne disease mainly caused by Fusarium fujikuroi, which seriously damages the yield and quality of rice. Phenamacril targets Myosin-5, thereby inhibiting its ATPase activity to exert an antifungal effect, demonstrating significant bioactivity against Fusarium species. However, the resistance of Fusarium fujikuroi field populations to phenamacril in Jiangsu Province in recent years remains unclear. In this study, a total of 223 Fusarium fujikuroi isolates were collected in Jiangsu Province from 2022 to 2023, with the resistance frequency increase from 25.88 % to 49.28 %. Additionally, a novel mutation type (S420I) in FfMyosin-5 was identified and confirmed by genetic transformation. The compound fitness index (CFI) revealed that the fitness of FfMyosin5(S420I) point mutants (1 x 10(5) < CFI <= 2 x 10(5)) was significantly lower than sensitive strain (CFI = 10.26 x 10(5)) in terms of mycelial growth rate, conidia production and conidia germination. In summary, the S420I mutation in FfMyosin-5 induces resistance to phenamacril while also decreased the fitness of Fusarium fujikuroi.

期刊论文 2025-09-01 DOI: 10.1016/j.pestbp.2025.106483 ISSN: 0048-3575

Global change can easily cause the wetland ecosystem structure and function to be damaged by alien species. Former studies on Spartina alterniiora invasion only focused on the effect of aboveground communities, ignoring the potential regeneration of soil seed banks. Therefore, the study aimed to find the key resources that limit the S. alterniiora invasion and the regulation mechanism for S. alterniiora regeneration. Through investigating the S. alterniiora communities with different invasion stages, we studied the structure and composition of the aboveground communities and the soil seed banks, in response to the soil properties and water and nitrogen addition. The dominant competitive advantage of S. alterniiora was mainly affected by the aboveground biomass, which was regulated by soil NH4+-N and moisture content. Although the richness was same in the soil seed banks under the S. alterniiora communities with different coverage, S. alterniiora seeds maintained its specific competitive dominance. The niche breadth of S. alterniiora and the niche overlap between S. alterniiora and Tripolium pannonicum was the highest under low aboveground coverage. The soil seed bank germination experiments showed that the S. alterniiora density decreased when the soil nitrogen concentration exceeded 1 g/ kg, while the density of native species E. crusgalli and T. pannonicum decreased when the water depth above the soil surface exceeded 2 cm. The successful naturalization of S. alterniiora invasion regulated by nitrogen-water coupling is a bet-hedging of the niche and fitness differences between invasive and native species in the coastal salt marsh of eastern China.

期刊论文 2024-12-01 DOI: 10.1016/j.ecoleng.2024.107416 ISSN: 0925-8574

Meloidogyne spp. are the most devastating plant-parasitic nematodes affecting tomato worldwide. Although resistant cultivars and rootstocks are used, selection for virulence occurs in the pathogen. Consequently, using other resistance sources, such as Solanum torvum, could improve resistance durability. Several experiments in microplots and plastic greenhouses were carried out to determine the potential use of S. torvum as a tomato rootstock to protect against M. incognita and M. javanica. In microplots, the relationship between nematode density at transplanting (Pi) and multiplication rate did not differ between Meloidogyne species in either ungrafted or grafted tomato. However, maximum multiplication rate and maximum density on grafted tomato were 1.27% and 2.93% those on ungrafted, respectively. The grafted tomato plants yielded between 2.9 and 7.5 more times than the ungrafted plants at Pi >= 100 eggs + J2s per 100 cm(3) of soil, but no differences were observed in plastic greenhouse where a large amount of scion-rooting occurred. In microplots, the quality of the tomato fruits of ungrafted and grafted plants was affected by the Pi. In parallel, some pot experiments were conducted on S. torvum and susceptible eggplant to determine the putative selection for nematode virulence to S. torvum and the nematode fitness cost. These showed that the nematode subpopulations infected and reproduced less on S. torvum than on eggplant. However, the female fertility was only reduced after development of three or four subpopulations on S. torvum. Finally, a histopathological study showed that nematode infection and development in S. torvum was delayed compared to eggplant.

期刊论文 2024-12-01 DOI: 10.1111/ppa.13991 ISSN: 0032-0862

The current research investigates individual and combined toxicity effects of nickel (Ni) and imidacloprid (IMI) on earthworm species Eisenia fetida fetida. Employing standardized toxicity parameters, we assessed the impact of environmentally relevant concentrations (ERC) of Ni, IMI, and their mixtures on key biomarkers and reproductive fitness of earthworms. Our findings reveal concentration-dependent responses with discernible adverse effects on physiological parameters. The ERC obtained for Ni was 0.095 ppm, and for imidacloprid was 0.01 ppm. Two concentrations (ERC and 1/5th) of both toxicants (individually and in combinations) were further given for 14 days, and parameters like avoidance behaviour, antioxidants, histology, and metabolomic profile were observed. The behaviour of earthworms was noted, where at 24-48 h, it was found to be in control soil, while later, at 72-96 h, they migrated to toxicants-treated soil. Levels of antioxidants (superoxide dismutase, catalase, reduced glutathione, ascorbic acid), lipid peroxidation, and lactate dehydrogenase were elevated in the testis, spermatheca, ovary, and prostate gland in a high concentration of Ni + IMI. Histological studies showed more vacuolization and disruption of epithelium that was increased in the prostate gland of the Ni + IMI high group, decreased number of spermatids, and damaged cell architecture was noted in testis and spermatheca of the Ni + IMI high group. The highest number of metabolites was found in Ni exposed group (181), followed by IMI (131) and Control (125). Thus, this study sheds light on the ecotoxicological effects of combinational exposure of these contaminants on an essential soil-dwelling organism, where IMI was more toxic than Ni, and both toxicants decreased earthworm reproductive fecundity.

期刊论文 2024-09-01 DOI: 10.1016/j.cbpc.2024.109964 ISSN: 1532-0456

Cadmium (Cd) is a heavy metal that is of great concern in agroecosystems due to its toxicity to plants, herbivores, carnivores, and human beings. The current study evaluated the allocation and bioaccumulation of Cd from soil to cotton plants, cotton plants to herbivore pests, and herbivorous pests to a natural enemy predator. When soil was spiked with 100 mg/kg Cd, results demonstrated that cotton roots accumulated more Cd than the stems and leaves. The bioaccumulation of Cd was less in 4th instar larvae, pupa, and adults of Serangium japonicum than in Bemisia tabaci adults. The bioaccumulation in S. japonicum elongated the immature development period and reduced adult longevity, oviposition days, fertility, and total pre-oviposition duration. The net reproduction of S. japonicum was also reduced, as was female mature weight and feeding potential; as a result, Cd exposure could reduce the future population size compared to uncontaminated populations. There was decreased activity of the antioxidant enzymes (SOD, CAT, and POD) and energy-conserving lipids (glycogen, triglyceride, and total cholesterol) in Cd-contaminated S. japonicum compared to controls. The detoxifying enzyme activity of GST and P450 increased while AChE activity did not change. The qRT-PCR research showed that SOD1, CAT, POD, glycogen, and triglyceride gene expression was higher than in controls, whereas detoxification gene expression did not change. Our results indicate that Cd exposure has a physiological trade-off between its adverse effects on life history traits and elevated detoxification and antioxidation of S. japonicum, which could result from gene expression alteration. Further studies are needed to assess whether Cd exposure causes irreversible DNA damage in S. japonicum.

期刊论文 2024-03-05 DOI: 10.1016/j.jhazmat.2023.133244 ISSN: 0304-3894
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页