共检索到 2

This study presents a hierarchical multiscale approach that combines the finite-element method (FEM) and the discrete-element method (DEM) to investigate tunneling-induced ground responses in coarse-grained soils. The approach considers both particle-scale physical characteristics and engineering-scale boundary value problems (BVPs) simultaneously, accurately reproducing typical tunneling-induced mechanical responses in coarsegrained soils, including soil arching and ground movement characteristics observed in laboratory tests and engineering practice. The study also unveils particle-scale mechanisms responsible for the evolution of soil arching through the underlying DEM-based RVEs. The results show that the rearrangement of microstructures and the deflection of strong contact force chains drive the rotation of macroscopic principal stress and the formation of soil arch. The microscopic fabric anisotropy direction can serve as a quantitative indicator for characterizing soil arching zones. Moreover, the effects of particle size distributions (PSD) and soil densities on ground deformation patterns are interpreted based on the stress-strain responses and contact network characteristics of DEM RVEs. These multiscale insights enrich the knowledge of tunneling-induced ground responses and the same approach can be applied to other geotechnical engineering analyses in coarse-grained soils.

期刊论文 2025-09-01 DOI: 10.1016/j.compgeo.2025.107319 ISSN: 0266-352X

The strength anisotropy and strain softening of natural soil can significantly impact the bearing capacity of shallow foundations on clay. In this article, we present a nonlocal numerical method to study the coupled rotation of the maximum normal stress axis and strain softening on the bearing capacity of shallow foundations on clay through a Cosserat strain softening constitutive model. The strength anisotropy and strain softening characteristics were numerically implemented into a finite-element (FE) program by dynamically updating the anisotropic cohesion in global Newton-Raphson iterations. Due to its nonlocal feature, the proposed nonlocal numerical method can overcome the mesh dependence in simulating the progressive failure of clay through the classical FE method. We first validated the efficacy of this method against the results of the plane strain test and numerical results in the literature. We then study the bearing capacity of a strip footing over anisotropic and strain-softening clay through the implemented numerical method. The results indicated that the deposition angle has an important effect on the bearing capacity and failure mode. The effects of the degree of anisotropy and strain softening on the ultimate bearing capacity are quantified through the numerical method. It is found that (1) the proposed method can effectively reflect the characteristics of the maximum normal stress axis rotation on the failure surface of the footing; (2) the ultimate bearing capacity of a footing (Pu) on anisotropic clay could increase linearly with an increase in the anisotropy ratio k (i.e., k is the ratio between C1 and C2) and decreases with an increase in the softening modulus; and (3) the strength anisotropy and strain softening are strongly coupling factors impacting the bearing capacity of anisotropic clay.

期刊论文 2024-05-01 DOI: 10.1061/IJGNAI.GMENG-8952 ISSN: 1532-3641
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页