This study presents a hierarchical multiscale approach that combines the finite-element method (FEM) and the discrete-element method (DEM) to investigate tunneling-induced ground responses in coarse-grained soils. The approach considers both particle-scale physical characteristics and engineering-scale boundary value problems (BVPs) simultaneously, accurately reproducing typical tunneling-induced mechanical responses in coarsegrained soils, including soil arching and ground movement characteristics observed in laboratory tests and engineering practice. The study also unveils particle-scale mechanisms responsible for the evolution of soil arching through the underlying DEM-based RVEs. The results show that the rearrangement of microstructures and the deflection of strong contact force chains drive the rotation of macroscopic principal stress and the formation of soil arch. The microscopic fabric anisotropy direction can serve as a quantitative indicator for characterizing soil arching zones. Moreover, the effects of particle size distributions (PSD) and soil densities on ground deformation patterns are interpreted based on the stress-strain responses and contact network characteristics of DEM RVEs. These multiscale insights enrich the knowledge of tunneling-induced ground responses and the same approach can be applied to other geotechnical engineering analyses in coarse-grained soils.
Marine and underwater structures, such as seawalls, piers, breakwaters, and pipelines, are particularly susceptible to seismic events. These events can directly damage the structures or destabilize their supporting soil through phenomena like liquefaction. This review examines advanced numerical modeling approaches, including CFD, FEM, DEM, FVM, and BEM, to assess the impacts of earthquakes on these structures. These methods provide cost-effective and reliable simulations, demonstrating strong alignment with experimental and theoretical data. However, challenges persist in areas such as computational efficiency and algorithmic limitations. Key findings highlight the ability of these models to accurately simulate primary forces during seismic events and secondary effects, such as wave-induced loads. Nonetheless, discrepancies remain, particularly in capturing energy dissipation processes in existing models. Future advancements in computational capabilities and techniques, such as high-resolution DNS for wave-structure interactions and improved near-field seismoacoustic modeling show potential for enhancing simulation accuracy. Furthermore, integrating laboratory and field data into unified frameworks will significantly improve the precision and practicality of these models, offering robust tools for predicting earthquake and wave impacts on marine environments.
This study aimed to emphasize the significance of spatial variability in soil strength parameters on the behavior of nailed walls, highlighting the necessity of probabilistic design approaches. The investigation involved a 7.2-m nailed wall reinforced with five nails, simulated using the local average subdivision random field theory combined with the limit equilibrium method and the FEM, known as the random limit equilibrium method (RLEM) and the random finite-element method (RFEM) approaches. Initially, the wall stability was evaluated by RLEM using 10,000 Latin hypercube sampling realizations. The wall was globally stable among all samples for a correlation length equal to its height (7.2 m). The wall behavior, associated displacements, moments, wall shear forces, nail axial forces, and ground settlements were examined using RFEM. The RFEM analysis reveals that different random fields influence the maximum displacement (H-max), maximum moment (M-max), and maximum shear force (Vmax) experienced by the wall. The cumulative distribution function plots were generated for the wall critical parameters, including H-max, M-max, and V-max. Leveraging the simple weighted averaging and ordered weighted averaging techniques, different combinations of H-max, M-max, and Vmax were assessed with varying weight assumptions. This allowed us to identify critical random field realizations and estimate the level of risk using a newly introduced parameter, the decision index. Finally, the effect of different correlation lengths (isotropic and anisotropic) for two different coefficients of variation of soil strength parameters on the distribution of H-max, M-max, and Vmax was studied. The findings highlight the importance of considering the spatial variability of soil properties to achieve a reliable design of nailed walls.
The permeability in the natural clay layer is obviously anisotropic, and the flow of water in the pores often deviates from Darcian law. In order to analyze the effect of anisotropic non-Darcian flow on the two-dimensional consolidation of a saturated clay layer, the vertical and horizontal permeability laws of saturated clay were measured by the falling-head permeability test. It was found that the flow of water in both directions can be described by Hansbo's flow equation, and Hansbo's flow parameters in these two directions were obviously different. Then, the two-dimensional Terzaghi consolidation equations were modified considering the anisotropic Hansbo's flow and discretized into finite-element formulations. The validity of the numerical model was verified through comparison with the literature solutions. The effect of the anisotropic Hansbo's flow on the consolidation process of a two-dimensional saturated clay layer was analyzed under different lower boundary conditions. The numerical results indicated that in the initial stage of consolidation, the excess pore pressure is slightly concentrated in a specific area below the loading boundary. Moreover, variations in the lower boundary conditions have little effect on the distribution of excess pore pressure, and the influence of the different Hansbo's flow parameters in the vertical direction on the dissipation rate of excess pore pressure is not evident. However, in the middle and late stages of consolidation, the pore-water pressure with the permeable lower boundary condition is significantly lower compared to that with the impermeable lower boundary condition. Additionally, increasing the values of Hansbo's flow parameters in the vertical direction further impedes the dissipation rate of excess pore pressure, which in turn slows down the consolidation process of the clay layer.
In this work, the effect of gas jets used in the deep vertical vibratory compaction technique are studied. Gas jets play a vital role in treating structured loess foundations by the pneumatic-vibratory probe compaction method. Utilizing the geotechnical particle finite-element method numerically, we estimate the limit gas injection pressure and delineate the injection-induced damage and plastic zones. The behavior of structured soil is described using an elastoplastic constitutive model considering its structure evolution. The analysis of structured loess under gas injection is based on the cavity expansion approach. Experimentally, we performed a scale model test of gas injection to investigate the mechanism of the gas jets on the surrounding soil and compared relevant results with numerical results. Numerical results show that the limit gas injection pressure for structured loess beyond a depth of 8.0 m ranges from 1,409.7 to 1,467.2 kPa, increasing with the increase of overburden depth while the current cavity expansion radius decreases. The radius of the plastic zone induced by cavity expansion is 2.0 to 3.0 times the current cavity radius within this depth range; for the damage zone, however, it ranges from 0.1 to 0.4 times. The horizontal pressure recorded during the model test is observed to be lower compared with the numerical simulation results. This discrepancy can be attributed to factors such as the neglect of gas leakage within the soil and the utilization of a uniform parameter. The gas jets expand soil in cyclic shear form. It goes through a process from destruction of soil structure to compression in the horizontal direction; then, its pressure gradually drops to zero in the expansion direction of the dominant channel in soil.
The cyclic loading of foundation structures in sand leads to an accumulation of plastic deformations in the structures. For shallow foundations of high and slender structures such as wind energy converters (WECs), an accumulation of the plastic rotations is expected under cyclic eccentric loading that is imposed by wind loads, which could be crucial for the proof of serviceability. A practical approach to predict the behavior of shallow foundations under high-cycle eccentric loading is under research. In this paper, a numerical approach, the cyclic strain accumulation method (CSAM), which has been validated for cyclically loaded monopiles, is adopted for shallow foundations under eccentric cyclic loading. Modifications to the CSAM are described, which are necessary to apply it to shallow foundations. The results that are gained with the modified method are compared with a medium-scale model test, in which the deformations of a footing with a diameter of 2.0 m under eccentric one-way cyclic loading were investigated. It can be concluded that the CSAM can make realistic predictions and shows satisfying agreement with the measured cyclic behavior. Although more experiments are needed to finally validate the method, the CSAM could be a promising numerical approach to account for the cyclic behavior of shallow foundations under eccentric cyclic loading in sand.
The strength anisotropy and strain softening of natural soil can significantly impact the bearing capacity of shallow foundations on clay. In this article, we present a nonlocal numerical method to study the coupled rotation of the maximum normal stress axis and strain softening on the bearing capacity of shallow foundations on clay through a Cosserat strain softening constitutive model. The strength anisotropy and strain softening characteristics were numerically implemented into a finite-element (FE) program by dynamically updating the anisotropic cohesion in global Newton-Raphson iterations. Due to its nonlocal feature, the proposed nonlocal numerical method can overcome the mesh dependence in simulating the progressive failure of clay through the classical FE method. We first validated the efficacy of this method against the results of the plane strain test and numerical results in the literature. We then study the bearing capacity of a strip footing over anisotropic and strain-softening clay through the implemented numerical method. The results indicated that the deposition angle has an important effect on the bearing capacity and failure mode. The effects of the degree of anisotropy and strain softening on the ultimate bearing capacity are quantified through the numerical method. It is found that (1) the proposed method can effectively reflect the characteristics of the maximum normal stress axis rotation on the failure surface of the footing; (2) the ultimate bearing capacity of a footing (Pu) on anisotropic clay could increase linearly with an increase in the anisotropy ratio k (i.e., k is the ratio between C1 and C2) and decreases with an increase in the softening modulus; and (3) the strength anisotropy and strain softening are strongly coupling factors impacting the bearing capacity of anisotropic clay.
The piezocone penetration test (CPTu) is a common geotechnical field test to evaluate soil properties. In interpreting the CPTu field measurements, soil drainage conditions are mostly considered completely drained or undrained; however, partial drainage conditions govern for such soils as silts or clayey sand mixtures. Previous studies show that neglecting partial drainage conditions causes incorrect estimation of soil geotechnical parameters. Most studies have been conducted using calibration chambers and centrifuge tests on clayey soils. Due to the complications in modeling the piezocone test, few numerical studies have been performed under partially drained conditions, especially on coarse-grained soils. Among the challenges of numerical modeling of CPTu, one can mention the difficulty of modeling soil structure in large strain mode and soil-water interaction behavior. In this paper, piezocone penetration tests were modeled using the advanced hypoplastic constitutive model and finite-element method. The behavior of Firoozkooh sandy soil under different drainage conditions and relative densities was analyzed. Then, the effect of cone penetration on the surrounding soils was discussed. It was shown that drainage conditions and the soil relative densities significantly affected the trend of variations in excess pore-water pressure (EPWP) generated around the piezocone.