共检索到 1

The strength, deformation, and hydraulic properties of geomaterials, which constitute embankments, vary with fine fraction content. Therefore, numerous research studies have been conducted regarding the effects of fine fraction content on the engineering properties of geomaterials. Howe ver, there have only been a few studies in which the effects of fine fraction content on the soil skeletal structure have been quantitatively evaluated and related to compaction and mechanical properties. In this study, mechanical tests were conducted on geomaterials with various fine fraction contents to evaluate their compaction and mechanical properties focusing on the soil skeletal structure and void distribution. Furthermore, an internal structural analysis of specimens using X-ray computed tomography (CT) images was conducted to interpret the results of mechanical tests. As a result, it was discovered that the uniaxial compressive strength increased with fine fraction content, and the maximum uniaxial compressive strength was observed at a low water content, not at the optimum water content. Additionally, the obtained CT images revealed that large voids, which could ser ve as weak points for maintaining strength, decreased in volume, and small voids were evenly distributed within the specimens, resulting in a more stable soil skeletal structure.

期刊论文 2025-06-13 DOI: 10.2320/matertrans.MT-Z2024010 ISSN: 1345-9678
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页