Bentonite grouting is utilized widely in geotechnical engineering to stabilize the excavation and prevent seepage in sandy soils. However, the infiltration behavior of bentonite slurry in sandy soil is not well understood, primarily due to rheological blocking and the formation of a filter cake. This study performed infiltration column tests to investigate the infiltration behavior under various conditions, including slurry concentration, sand properties, grouting pressure, and infiltration duration. Monitoring included infiltrated distances (calculated from drainage volume), pore pressure at different depths, and bentonite distribution using methylene blue titration. Results indicate that rheological blocking occurs during the infiltration process as bentonite slurry, which is a shear-thinning fluid, increases in viscosity with a decreased shear rate. This phenomenon is more pronounced with higher slurry concentrations, leading to reduced infiltration distances. Additionally, in soils with pore throats smaller than bentonite particles, a filter cake forms above the surface of the grouted soil, decreasing the pore pressure and further reducing infiltration distance. The distribution of bentonite content remains consistent across the infiltrated zone, resulting in a linear pressure drop. Based on these findings, the study proposes a novel model that combines the generalized Darcy's law, the Herschel-Bulkley rheological model, and mass conservation of slurry to predict the spatiotemporal progression of the infiltration front. This model, which was validated using experimental data, accurately predicts the effects of rheological properties and filter cake formation on infiltration. The results of this study provide valuable insights into infiltration processes and enhance the application of bentonite slurry in grouting.
The pressure infiltration of fresh and salty bentonite slurries against a medium-fine sand has been investigated in a laboratory setup. In the tests, two series of salty bentonite slurries were used: non-pre-hydrated salty slurry, for exploring what will happen if directly salty water is used to make bentonite slurry, and pre-hydrated salty slurry, for identifying the consequence of pre-hydrated fresh bentonite slurry mixing with the salty water in the soil pores. The salty water employed was a mixture of different percentages of freshwater and seawater. Experimental results show that the test with non-pre-hydrated salty slurry exhibited a significantly faster and shorter (time) mud spurt, or even no mud spurt at all, compared to the test with fresh or pre-hydrated salty slurry. The influence of salty water on the pre-hydrated fresh bentonite is less than on the non-pre-hydrated slurry and depends on the seawater content in the salty water. Compared with the test with fresh bentonite slurry, a slower and shorter (time) mud spurt could be seen in the test with the pre-hydrated salty slurry when the seawater content was not more than 20%. As seawater content exceeded 20%, a faster mud spurt showed up; however, the timespan of the mud spurt may be shorter or longer, mainly depending on the viscosity and sedimentation behavior of the bentonite. A model to estimate the slurry infiltration distance during mud spurt is introduced, which agrees well with the experimental results using the measured input parameters. After the mud spurt, a filter cake would form in each test. The permeability of the filter cake increased with the increase in seawater content. Directly mixing salty water remarkably increased the permeability of the filter cake, while the pre-hydration of bentonite could reduce this increase. For instance, with the salty water containing 10% seawater, the permeabilities of the filter cakes formed by fresh bentonite slurry, non-pre-hydrated salty slurry, and pre-hydrated salty slurry with the 50 g/L bentonite concentration were 1.69 x 10-9 m/s, 2.26 x 10-8 m/s, and 3.23 x 10-9 m/s, respectively.
In slurry shield tunneling, the stability of tunnel face is closely related to the filter cake. The cutting of the cutterhead has negative impact on the formation of filter cake. This study focuses on the formation time of dynamic filter cake considering the filtration effect and rotation of cutterhead. Filtration effect is the key factor for slurry infiltration. A multilayer slurry infiltration experiment system is designed to investigate the variation of filtrate rheological property in infiltration process. Slurry mass concentration CL, soil permeability coefficient k, the particle diameter ratio between soil equivalent grain size and representative diameter of slurry particles d(10)/D-85 are selected as independent design variables to fit the computational formula of filtration coefficient. Based on the relative relation between the mass of deposited particles in soil pores and infiltration time, a mathematical model for calculating the formation time of dynamic filter cake is proposed by combining the formation criteria and formation rate of external filter cake. The accuracy of the proposed model is verified through existing experiment data. Analysis results show that filtration coefficient is positively correlated with slurry mass concentration, while negatively correlated with the soil permeability coefficient and the particle diameter ratio between soil and slurry. As infiltration distance increases, the adsorption capacity of soil skeleton to slurry particles gradually decreases. The formation time of external filter cake is significantly lower than internal filter cake and the ratio is approximately 3.9. Under the dynamic cutting of the cutterhead, the formation time is positively associated with the rotation speed of cutter head, while negatively with the phase angle difference between adjacent cutter arm. The formation rate of external filter cake is greater than 98% when d(10)/D-85 <= 6.1. Properly increasing the content or decreasing the diameter size of solid-phase particles in slurry can promote the formation of filter cake.
The filter cake formation during slurry shield tunneling in high permeability soil layers is complex and difficult to monitor. There is no reliable method to evaluate the mechanical characteristics during the filter cake formation. A theoretical model is proposed to describe the filter cake formation and development in this study. The finite difference method is used to simulate the whole filter cake formation process. In addition, the influence of the key bentonite slurry parameters and of the deep infiltration on the filter cake formation is investigated based on the proposed model. The results show that the excess pore water pressure within the filter cake is not uniformly distributed. The slurry support effect is manifested by a pressure drop generated on both sides of the filter cake. The development process of the filter cake can be summarized into three stages: prior infiltration filling of the filter cake, accumulation and thickening of the new filter cake, and compression and consolidation of the prior filter cake. The slurry deep infiltration results reflected by the membrane specific resistance have the most significant effect on the filter cake development. Compared with the slurry concentration, the viscosity has a greater influence on the formation and final thickness of the filter cake.
Bentonite slurry is frequently used to temporarily stabilize the excavation for slurry tunnel boring machines (TBMs) driving in permeable soils, such as sand and gravel. In this study, two types of bentonite slurries (BS1 and BS2) were subjected to a series of infiltration column tests and modified fluid-loss tests under various pressure levels. Monitoring of water discharge and pore pressures at different depths of the sand bed enabled the identification of two effective sealing patterns during infiltration: the formation of a filter cake and rheological blocking. BS1 exhibited a tendency to form a filter cake, which played a vital role in effectively transferring the applied pressure to the underlying soil skeleton. The application of higher pressure facilitated the rapid formation of a filter cake, resulting in a shorter time span for slurry invasion and minimizing fluid loss. On the other hand, rheological blocking was dominant when using BS2, and the maximum infiltration distance was found to linearly increase with the applied pressure. A comparison between the measurement and a simple prediction model derived from Darcy's law revealed an overestimation of the infiltration distance during slurry invasion. Furthermore, based on the modified fluid-loss test, higher pressure was found to densify the filter cake and result in lower hydraulic conductivity.
In sandy soil, the timely and effective formation of a filter cake is crucial for maintaining the stability of the excavated face during slurry shield tunnelling. Obtaining real-time information on slurry infiltration and particle migration is challenging, which greatly impacts the formation of the filter cake. Real-time monitoring of slurry infiltration and particle deposition is achieved through the use of electrical resistivity and pore water pressure measurements of the soil. It has been discovered that the primary pathway for slurry infiltration is inevitable in sandy soil, and it is crucial to take note of the persistent slurry leakage resulting from this situation in the shield excavation face. The distribution of slurry particle deposition is highly non-uniform in the penetration direction, with the maximum particle deposition occurring at the slurry-soil interface. However, this deposition is susceptible to disturbance from shield cutting tools, which can compromise the safety of the excavation face. Even if the particle size of the slurry is smaller than the pore size of the sand stratum, the slurry with higher viscosity can still form an internal filter cake. Furthermore, the research indicates that slurry infiltration can induce regular changes in soil electrical resistivity.