Arbuscular mycorrhizal (AM) fungi are important plant symbionts that provide plants with nutrients and water as well as support plant defences against pests and disease. Consequently, they present a promising alternative to using environmentally damaging and costly fertilisers and pesticides in agricultural systems. However, our limited understanding of how agricultural practices impact AM fungal diversity and functions is a key impediment to using them effectively in agriculture. We assessed how organic and conventional agricultural management systems shaped AM fungal communities. We also investigated how AM fungal communities derived from these agricultural management systems affected crop biomass and development. Six soil samples from five organically and five conventionally managed agricultural sites were used to cultivate Sorghum bicolor. Plant growth, plant nutrient concentrations and AM fungal colonisation rates were analysed alongside DNA metabarcoding of community composition. We observed that soil from conventional agricultural fields resulted in a pronounced reduction in sorghum biomass (-53.6%) and a significant delay in flowering compared to plants grown without AM fungi. Sorghum biomass was also reduced with soil from the organic system, but to a lesser extent (-30%) and without a delay in flowering. Organic systems were associated with a large proportion of AM fungal taxa (50.5% of VTs) not found in conventional systems, including Diversispora (r(2) = 0.09, p < 0.001), Archaeospora (r(2) = 0.07, p < 0.001) and Glomus (r(2) = 0.25, p < 0.001) spp., but also shared a large proportion of taxa with conventional systems (42.3% of VTs). Conventional systems had relatively few unique taxa (7.2% of VTs). Our results suggest that conventional agricultural practices selected against AM fungi that were, in this context, more beneficial for host plants. In contrast, organic management practices mitigate this negative effect, likely due to the presence of specific key AM fungal taxa. However, this mitigation is only partial, as less beneficial AM fungal taxa still persist, probably due to abiotic factors associated with agricultural management and the sensitivity of AM fungi to these factors. This persistence explains why the effect is not entirely eradicated. Read the free Plain Language Summary for this article on the Journal blog.
Land degradation can cause food insecurities and can damage ecosystems. This study highlights the potential of cyanobacteria (Anabaena variabilis, Spirulina platensis, Scytonema javanicum, and Nostoc commune), along with bacteria (Bacillus sp. SSAU-2), and their consortia to form biological soil crust, restoring soil properties and promoting plant growth. The efficiency of soil improvement was characterized by physiochemical parameters such as phosphate solubilization, %TOC, pH, and salinity. Scanning electron microscopy and a pot experiment were utilized to observe the morphological and soil improvement studies. Bacterial inoculation resulted in significant improvements in soil fertility, such as exopolysaccharide, organic carbon, organic matter, phosphorus content, and total soil porosity. Cyanobacteria consortia were more effective than monocultures at improving soil fertility and promoting barley plant development. The potential value of selected cyanobacteria and bacterial consortia as a useful tool for the restoration of degraded land is demonstrated experimentally by this study.
This study evaluates the potential of using rice straw waste as a sustainable alternative for managing the dredge sediment. The rice straw was used to reinforce the dredge slurry to realize treating the wastes with wastes. The dredge slurry could be relocated with altered rheological properties or reclaimed cultivable land by in-situ management. In this framework, the rheological and fertility properties of straw-reinforced dredge slurry were investigated with a 90-day degradation period. The increased liquid limit and fine content were observed regardless of the straw content and degradation time, and a decreased slump flow and increased dynamic viscosity were obtained after the addition of straw. Nutrients, including SOC, TN, P, and K, increase over time after straw reinforcement, suggesting effective land reclamation by straw blending. The increases were abrupt in the first 14 days, followed by a gently increasing rate. Soil pH decreases over time to the range more suitable for planting. Results suggest that effective straw reinforcement alters the rheological properties beneficial for vehicle transportation and improves the soil fertility for in-situ tillage. This study supplements the societal image of dredge materials and waste straws in engineering and environmental applications.
Drought stress negatively affects cotton pollen fertility, which in turn leads to a decrease in seed number per boll and boll weight. Exogenous melatonin application significantly enhances pollen fertility under drought conditions, while the specific underlying mechanisms remain unclear. A pot experiment was conducted using a cultivar Yuzaomian 9110 under two moisture treatments (soil relative water content at 75 +/- 5 % and 45 +/- 5 %) with two melatonin concentration (0 and 200 mu M) to investigate the effects of exogenous melatonin on the structural traits and physiological metabolism of cotton anthers and its' relationships with pollen fertility. Results demonstrated the significant impact of drought on anthers development and metabolism, with damage to the anther tapetum and decreased starch and adenosine triphosphate (ATP) contents, subsequently resulting in reduced pollen germination rate, seed number per boll and boll weight. Melatonin application in water-deficit anthers up-regulated the expression of sucrose transporter protein (GhSWEET55) and phosphate sucrose synthetase, promoting sucrose import and synthesis, respectively. However, it also increased sucrose synthase and acid convertase, accelerating sucrose decomposition and reducing its content. Additionally, melatonin application promoted starch accumulation in water-deficit anthers by enhancing activities of adenosine diphosphate glucose pyrophosphorylase and soluble starch synthase, meaning that potential energy storage was increased, which facilitated the formation of pollen fertility. Although melatonin application reduced the expression of pyruvate kinase (GhPK) and glucose 6-phosphogluconate dehydrogenase (GhG6PD) genes in water-deficit anthers, it upregulated hexokinase (GhHXK) and citrate synthase (GhCIT) expression, enhancing ATP content, and ultimately pollen fertility, seed number and boll weight under drought. In summary, exogenous melatonin preserved cotton pollen fertility under drought stress by regulating carbohydrate and energy metabolism, especially enhancing starch and ATP accumulation in anthers.
Background and aims Locally produced bio-inoculant consortium and plant bioactive extract were studied as sustainable management options to boost maize production. Methods The field study was conducted from 13th April to 15th July 2021 and repeated on another field site from 5th May to 4th August 2023 to avoid residual effects while validating reliability of the treatments. Experiments were set up as randomized complete block design with 5 treatments including a Control (No input), Chemical (NPK fertilizer + synthetic insecticide), Organic (Poultry manure + Piper guineense), and locally produced or commercial bio-inoculant of plant growth-promoting bacteria, with 4 replicates. Results Local inoculum significantly (P < 0.05) increased maize grain yield than untreated control. Microbial and organic amendments produced comparable maize grain yield to chemical input, which were significantly higher than the untreated control (P < 0.05). The local inoculum reduced fall armyworm (FAW) infestation of maize cobs by 18% and 31% in 2021 and 2023, respectively, compared to untreated control (P < 0.05). Stem borer infestation also reduced significantly (P < 0.05) across treatments for both years, with the lowest in local inoculum (6%), followed by commercial inoculum (31%), organic (52%), chemical (42%), and control (100%) in 2021, with a similar trend observed in 2023. In 2021, amounts of plant available phosphorus and exchangeable potassium were 71 mg kg(-1) and 1010 mg kg(-1) soil, respectively, in the locally produced bio-inoculant consortium, which were significantly (P < 0.05) higher than 30 mg kg(-1) and 374 mg kg(-1) in the control, respectively, and a similar trend was observed in 2023.
Rapid population growth and increased use of agricultural technology have exacerbated agrarian problems. While mechanization has improved agricultural production, the use of heavy machinery for planting, irrigation, and harvesting has resulted in soil compaction. Soil compaction reduces pore space and increases soil bulk density, which hinders plant growth. Globally, automated agriculture has reduced crop production by more than 50%. In developing countries, grazing animals in crop fields increases soil compaction. Soil compaction hinders root penetration, nutrient absorption, and water infiltration, increasing the risk of soil erosion and runoff. The study investigates novel ways to reduce soil compaction, namely the utilization of nanoparticles (NPs) and nanotechnology (NT). NPs have unique qualities that can improve the mechanical properties of soil, increase its strength, and minimize compaction. Some of the NPs such as Carbon nanotubes, nanolites, nanosilica, and nanoclay have been demonstrated to increase soil fertility, water retention, and structural stability. NPs can reduce environmental pollutants while improving soil quality. However, questions about their long-term biodegradability, ecological toxicity, and health effects require further investigation. The study also addressed how NPs affect the environment and human health. Their small size raises concerns about potential exposure and toxicity to individuals and ecosystems. The paper also briefly discusses the economic and regulatory considerations related to the production, use, and disposal of NPs, emphasizing the need for comprehensive legislation, environmental impact studies, and stakeholder involvement in decision-making. Although NPs offer promise for sustainable agriculture practices, more research is necessary to optimize their use and ensure long-term safety, as well as to gain a better understanding of their unique interactions with soil physics.
The increasing frequency of low-temperature events in spring, driven by climate change, poses a serious threat to wheat production in Northern China. Understanding how low-temperature stress affects wheat yield and its components under varying moisture conditions, and exploring the role of irrigation before exposure to low temperatures, is crucial for food security and mitigating agricultural losses. In this study, four wheat cultivars-semi-spring (YZ4110, LK198) and semi-winter (ZM366, FDC21)-were tested across two years under different conditions of soil moisture (irrigation before low-temperature exposure (IBLT) and non-irrigation (NI)) and low temperatures (-2 degrees C, -4 degrees C, -6 degrees C, -8 degrees C, and -10 degrees C). The IBLT treatment effectively reduced leaf wilt, stem breakage, and spikelet desiccation. Low-temperature stress adversely impacted the yield per plant-including both original and regenerated yields-and yield components across all wheat varieties. Furthermore, a negative correlation was found between regenerated and original yields. Semi-spring varieties showed greater yield reduction than semi-winter varieties, with a more pronounced impact under NI compared to IBLT. This suggests that the compensatory regenerative yield is more significant in semi-spring varieties and under NI conditions. As low-temperature stress intensified, the primary determinant of yield loss shifted from grain number per spike (GNPS) to spike number per plant (SNPP) beyond a specific temperature threshold. Under NI, this threshold was -6 degrees C, while it was -8 degrees C under IBLT. Low-temperature stress led to variability in fruiting rate across different spike positions, with semi-spring varieties and NI conditions showing the most substantial reductions. Sensitivity to low temperatures varied across spikelet positions: Apical spikelets were the most sensitive, followed by basal, while central spikelets showed the largest reduction in grain number as stress levels increased, significantly contributing to reduced overall grain yield. Irrigation, variety, and low temperature had variable impacts on physiological indices in wheat. Structural equation modeling (SEM) analysis revealed that irrigation significantly enhanced wheat's response to cold tolerance indicators-such as superoxide dismutase (SOD), proline (Pro), and peroxidase (POD)-while reducing malondialdehyde (MDA) levels. Irrigation also improved photosynthesis (Pn), chlorophyll fluorescence (Fv/Fm), and leaf water content (LWC), thereby mitigating the adverse effects of low-temperature stress and supporting grain development in the central spike positions. In summary, IBLT effectively mitigates yield losses due to low-temperature freeze injuries, with distinct yield component contributions under varying stress conditions. Furthermore, this study clarifies the spatial distribution of grain responses across different spike positions under low temperatures, providing insights into the physiological mechanisms by which irrigation mitigates grain loss. These findings provide a theoretical and scientific basis for effective agricultural practices to counter spring freeze damage and predict wheat yield under low-temperature stress.
High-temperature thermal desorption is effective for remediating organic-contaminated sites, but its damage to soil functions and high energy consumption raise concerns. In this work, the variation of fertility indicators of two soils with thermal treatment temperature was investigated experimentally. To overcome the difficulties in measuring soil thermophysical properties under sealing and high-temperature conditions, two apparatus matching with the Hot Disk device were established and by which massive data were measured. The results show that, as temperature rises up to 500 degrees C, the combustion and decomposition of organic components and soil minerals gradually enhance, leading to a decrease in most fertility indicators, but an increase in grain size and pH. Available phosphorus and exchangeable potassium decrease with temperature rise first, but increase over 400 degrees C. Soil thermal conductivity and specific heat are positively correlated with temperature and water content. Water diffusion will intensify over 40 similar to 60 degrees C, leading to an intense increase in soil thermal conductivity. The results are expected to provide data basis and theoretical guidance for the comprehensive consideration of remediation effects, land reuse, and energy consumption in practical applications of thermal desorption remediation.
Soil salinization is a major factor threatening global food security. Soil improvement strategies are therefore of great importance in mitigating the adverse effect of salt stress. Our study aimed to evaluate the effect of biochar (BC) and nitric acid-modified biochar (HBC) (1%, 2%, and 3%; m/m) on the properties of salinized soils and the morphological and physiological characteristics of pakchoi. Compared with BC, HBC exhibited a lower pH and released more alkaline elements, reflected in reduced contents of K+, Ca2+, and Mg2+, while its hydrophilicity and polarity increased. Additionally, the microporous structure of HBC was altered, showing a rougher surface, larger pore size, pore volume, specific surface area, and carboxyl and aliphatic carbon content, along with lower aromatic carbon content and crystallinity. Moreover, HBC application abated the pH of saline soil. Both BC and HBC treatments decreased the sodium absorption rate (SAR) of saline soil as their concentration increased. Conversely, both types of biochar enhanced the cation exchange capacity (CEC), organic matter, alkali-hydrolyzable nitrogen, and available phosphorus and potassium content in saline soils, with HBC demonstrating a more potent improvement effect. Furthermore, biochar application promoted the growth-related parameters in pakchoi, and reduced proline and Na+ content, whilst increasing leaf K+ content under salt stress. Biochar also enhanced the activity of key antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) in leaves, and reduced hydrogen peroxide (H2O2) and malondialdehyde (MDA) content. Collectively, modified biochar can enhance soil quality and promote plant growth in saline soils.
Deforestation and slash combustion have substantial adverse impacts on the atmosphere, soil and microbe. Despite this awareness, numerous individuals persist in opting for high-intensity Eucalyptus planting through slash-burning in pursuit of immediate profits while disregarding the environmental significance and destroying the soil. Slash-unburnt agriculture can effectively safeguard the ecological environment, and compared with slash-burning, there remains a limited understanding of its regulatory mechanisms on soil fertility and microbial community. Also, large uncertainty persists regarding the utilization of harvest residues. Thoroughly investigating these questions from various perspectives encompassing physical soil characteristics, nutrient availability, bacterial community structures, and stability is crucial. To explore the ecological advantages of slash-unburnt techniques on microorganisms and their associated ecosystems, we used two slash-unburnt (Unburnt) planting techniques: Spread (naturally and evenly covering the forest floor after logging) and Stack (residues are piled along contour lines) as well as the traditional slash Burnt method (Burnt) in a Eucalyptus plantation. A comparative analysis was conducted between the two methods. We observed that over a span of 4 years, despite the initial lower application of fertilizer in the Unburnt treatments compared with the Burnt treatment during the first 2 years, the Unburnt treatment gradually caught up or even surpassed and attained similar nutrient levels as the Burnt treatment. Alphaproteobacteria was the main phyla that indicated the difference in soil bacterial communities between Burnt and Unburnt treatments. The microbial networks also highlighted the significance of the Unburnt method, as it contributed to the preservation of crucial network nodes and the stability of soil bacterial communities. Therefore, rational utilization of harvest residue may effectively avoid the vast damage caused by slash-burning to Eucalyptus trees and the soil environment but may also increase the potential for restoring soil fertility, improving fertilizer utilization efficiency, and maintaining microbial community stability over time.