Safety assessment of ductile iron (DI) pipelines under fault rupture is a crucial aspect for underground pipeline design. Previous studies delved into the response of DI pipelines to strike-slip faults, but all existing theoretical methods for DI pipelines under strike-slip faults are not suitable for normal fault conditions due to the difference in soil resistance distribution. In this study, analytical solutions considering asymmetric soil resistance and pipe deflection are developed to analyze the behavior of DI pipelines under normal faulting. Results indicate that DI pipelines with a longer segment length are more vulnerable to pipe bending damage, while exhibiting a lower sensitivity to joint rotation failure. For the conditions of pipe segment length L = 1.5 m at all burial depths and L = 3 m at a shallow burial depth, when the fault-pipe crossing position shifts from a joint to a quarter of the segment length (rp = 0 similar to 0.25), DI pipelines are more prone to joint rotation failure. However, in the cases of L = 3 m at a moderate to deep burial depth and L = 6 m at all burial depths, the most unfavorable position is rp = 0.75, dominated by the mode of pipe bending failure.